

Exploring Temporal Memory of LSTM and
Spiking Circuits

Arne Koopman, Matthijs van Leeuwen & Jilles Vreeken

Adaptive Intelligence Laboratory, Intelligent Systems Group,
Institute for Information and Computing Sciences, Utrecht University

{acmkoopm, mleeuwen, jvreeken}@cs.uu.nl

Abstract. We have investigated two specific network types in the class of
dynamic neural networks: LSTM and spiking neural networks. Dynamic neural
networks in general are computationally powerful and very promising for tasks
in which temporal information has to be processed. We’d like to remark that
this is the case for virtually any task or application interacting with the real
world. We have tested the networks on a broad set of dynamic tasks and most
problems were solved by both; there are some fields though where either LSTM
or the spiking neural networks performed better. These differences can be
largely brought back to the differences between second and third generation
networks.

1 Introduction

We have investigated classes of neural networks that are capable of having an
internal memory state, i.e. the network just receives input from ‘now’ and has to store
that somehow in order to influence later outputs. This is a feature required to solve
dynamic tasks, tasks in which there is an input-flow that has to be processed without
having the help of receiving older inputs again from the outside. Nearly any task in
the real world requires such a mechanism, as inputs are typically only received just
once.

The neural structure known as once brain will have to temporarily store
information in order for you to have a short term memory: a form of memory for
which connections between neurons don’t need to be physically altered, information
is retained by recurrent activity between neurons. We call these dynamic neural
networks, of which we’ll discuss two quite different types in particular: long-short
term memory and spiking neural networks.

Artificial neural networks have become a standard tool within computer science;
the first ideas and models are over fifty years old. The first generation of artificial
neural networks consisted of McCulloch-Pitts threshold neurons [3], a conceptually
very simple model: a neuron sends a binary ‘high’ signal if the sum of its weighted
incoming signals rises above a threshold value. Second generation neurons do not use
such a threshold but a continuous activation function to compute their output signals,
making them suitable for analogue in- and output. Examples of commonly used

activation functions are the sigmoid and hyperbolic tangent. Typical examples of
neural networks consisting of neurons of these types are feed-forward and recurrent
neural networks.

Real neurons have a base firing-rate (an intermediate frequency of pulsing) and
continuous activation functions can model these intermediate output frequencies.
Hence, neurons of the second generation are more biologically realistic and powerful
than neurons of the first generation [15]. Also, real neurons use individual pulses as
signals, short voltage spikes that excite connected neurons. Neuron models of the
first two generations do not employ these; for sake of simplicity their output signals
are typically single analogue values between 0 and 1. These signals can be seen as
normalised firing rates (frequencies) of the neuron. This is a so-called rate coding,
where a higher average rate of firing correlates with a higher output signal. Due to
such an averaging window mechanism the output value of a neuron can be calculated
in iteration. After doing such a cycle for each neuron the response of the network to
the input values is known.

In nearly all real-world-related tasks you need to take previously experienced
inputs into account in order to determine the appropriate action or conclusion. In
other words: the network needs to have some form of memory. Standard feed-
forward networks do not have this capability, and without tricks they cannot be used
to infer temporal relations. A widely used trick is to present the network not only the
current input, but also a window of previous inputs [6,7]. This solution is clearly not
biologically plausible and has some major disadvantages: only temporal relations
within the input-window can be detected and huge input windows are required for
long term influences, overtaxing both the system and learning capabilities [10].

2 Recurrent Sigmoid Neural Networks

Second generation neurons are computationally less complex than their biologically
more plausible spiking counterparts and were therefore more appealing in early
research, where they were used in various recurrent network topologies [5,11].
Popular training algorithms for recurrent neural networks include Back-Propagation
Through Time (BPTT) and Real-Time Recurrent Learning (RTRL) [7,8,9]. A major
drawback of BPTT is its need to record the whole network state, inputs, target
vectors and weights during the training phase, as weight adjustment is done only
after the epoch has ended. In contrast, RTRL allows for real-time weight adjustments,
at the cost of losing the ability to follow the true gradient, which gives no practical
limitations though [7].

To operate correctly with sigmoid networks, these algorithms require that time
lags between inputs and target outputs are kept small; training becomes impossible
otherwise. In second generation networks, large time lags tend to either blow the
error flow up or let it vanish to zero; leading, respectively, to oscillating weights or a
situation where learning does not take place at all. Several solutions to this problem
of decaying error flow have been proposed [11,12], from which we have selected
Long Short-Term Memory as the second generation alternative for our experiments.

2.1 LSTM

An efficient method of
dealing with decaying error
flow is Hochreiter’s Long
Short Term Memory
(LSTM), of which Constant
Error Carrousels (CECs) are
an essential element. Their
basic function is to ensure a
constant error flow by
producing the sum of its
previous and current inputs
(see fig. 1). The model is
explained in more detail in
Hochreiter’s work [12].

Because the error flow does not suffer from decay, interactions with the outside
world have to be selected with care: useful error signals have to sustain in the
network and irrelevant memory content may not disrupt the current output.
Especially with long time lags, time sequences potentially contain a lot of junk input,
which harness the useful memory content and therefore does not benefit the learning
process.

Restraining this unwanted flow is done by additional regulating gate units that
scale the flow from and to the CEC. Gate units receive their input from the input,
output and current network state and are trained like normal sigmoid cells to produce
the scale factor. In this fashion, gate units can be trained to be selective for certain
temporal events and allow the CEC to accumulate the flow of different events. The
combination of input gate unit, CEC and output gate unit forms a memory (see fig. 1)
cell and is able to satisfy above needs.

When the temporal sequences contain more complex spatial relations at certain
time steps, it can be convenient to combine several memory cells together and give
them the same temporal selectivity, which makes them focus at the same moment.
This is done by grouping several memory cells together that share input and output
units to form a memory block.

These memory blocks are integrated into a standard LSTM network topology, in
which the input and output layer consists of sigmoid units. The memory blocks reside
in the fully connected hidden layer and are optionally aided by sigmoid hidden units.

For the complete algorithm, we refer to the work of Williams et al. [7,8] for
details. The LSTM networks in our experiments are trained by a truncated variant of
RTRL, which compensates for the multiplicative dynamics caused by the input and
output gates. Upon entering the memory cell, the error signal is scaled by the output
unit and can flow through the CEC indefinitely. When it leaves the CEC, it is first
scaled by the input unit, used to adjust the incoming weights and is finally truncated.
In short, error signals which arrive at a memory cell do not get propagated back
further in time.

Fig. 1. The core of the LSTM network: the Memory Cell
with in its centre the Constant Error Carousel, which
ensures the constant error flow needed for learning long
time dependencies [12]

3 Spiking Neural Networks

In the third generation of neural networks,
the level of biological realism and
computational power is raised by using
individual spikes. Spiking neurons are
inherently dynamic as they have an ever-
changing internal state: their membrane
voltage. This provides the network with an
internally continuous memory, allowing it
to incorporate spatial-temporal
information in communication and
computation, like real neurons do [4,14].
So instead of using rate coding, these neu-
rons use pulse coding: mechanisms where
neurons receive and transmit individual
pulses, allowing multiplexing of
information as frequency and amplitude of
sound [1].

There are many different schemes for
the use of spike timing information in
neural computation. We’ve chosen to use the spike response model, a model in the
threshold-fire class of spiking neuron. It’s a conceptually simple, easy to implement
model that captures key elements of the biologically very realistic Hodgkin-Huxley
model [1,2]. We’ll cover the details of this model here, further on in this paper we
will describe the adaptations we’ve made in our implementation.

All action potentials are look-alikes. We can therefore forget about their form and
characterise them by their firing times ti

(f). The lower index i indicates the neuron, the
upper index f the number of the spike. We can then describe the spike-train of a
neuron as

(1) (){ ,..., }n
iF t t= (1)

The variable ui is commonly used to refer to the internal state, or membrane
potential, of a neuron i. If a neuron’s membrane potential crosses threshold value ϑ
from below, it generates a spike. We add the time of this event to Fi, defining this set
as

} 0| { >′∧== (t)u(t)utF iii ϑ (2)

When a neuron generates an action potential, the membrane potential suddenly
increases, soon followed by a long lasting negative after-potential (see fig. 2b). This
sharp rise above the threshold value makes it is absolutely impossible for the neuron
to generate another spike and is named absolute refractoriness. In the period of
relative refractoriness, which we call the negative spike after-potential (SAP), it is
less likely that the neuron fires again. We can model this absolute and negative
refractoriness with kernel η:

Fig. 2. (a) Schematic drawing of a neuron.
(b) Incoming post-synaptic potentials alter
the membrane voltage so that it crosses
threshold value ϑ; the neuron spikes and
goes into a refractory state. (c) Typical forms
of excitatory and inhibitory postsynaptic
potentials over time [1]

0 exp
abs

abs

abs

s δn ()H(s δ)(s) t
KH(s)H(δ s)

η
−

− − −
=

− −

(3)

1 if 0
0 if 0

s
Η(s)

s
>⎧

= ⎨ ≤⎩
 (4)

The duration of the absolute refractoriness is set by δabs, during which large
constant K ensures that the membrane potential is vastly above the threshold value.
Constant n0 scales the duration of the negative after-potential. Having a description
of what happens to a neuron when it fires, we need one for the effect of incoming
postsynaptic potentials.

exp exp
ij ij

ij
ij

m s

s s(s) H(s)ε
τ τ

⎡ ⎤⎛ ⎞ ⎛ ⎞− Δ − Δ
= − − − −Δ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

 (5)

In equation 5, Δij defines the transmission delay (axons and dendrites are fast,
synapses relatively slow) and 0<τs<τm are time constants defining the duration of the
effect of the postsynaptic potential. We use variable wij to model the synaptic efficacy
or weight; with which we also can model inhibitory connections by using values
lower than zero.

Neurons of the second generation work in the iterative, clock-based manner of
digital computers, but can deal with analogue input values; we can quite easily feed
input neurons with digitised values from a dataset or a robot-sensor. We cannot just
insert such values into a spiking neuron and we will have to affect the membrane-
voltage directly according to these values. This is done by hext(t) that describes all
external influences to the neuron’s membrane potential.

(f)

i j j

(f)ext
ij ij j

j t F

h(t) h (t) w (t t)ε
∈Γ ∈

= + −∑ ∑ (6)

The neuron might get excited due to outside influences and fire, effectively
transforming an analogue input value into the signal the network can process: a
spike. The current excitation of a neuron is described by

(f)
i i

(f)
i i i

t F

u (t) (t t) h(t)η
∈

= − +∑ (7)

where the refractory state, effects of incoming postsynaptic potentials and external
events are combined. Together with equation 3 this forms the spike-response model,
a powerful though easy to implement model for working with spiking neural
networks.

4 Tasks

Our goal was to compare a second generation with a third generation neural network
type on dynamic tasks. We therefore composed tasks that require the networks to do
more than statically map single input values to single output values. In other words,
an internal state or history of previous inputs is required to be able to produce the
correct output.

To the best of our knowledge, evolving spiking neural networks for such time
series tasks has hardly been done before. Because of this we weren’t sure what
performance to expect and thus started with a few simple tasks. We will now describe
all tasks that we created data sets for, which we used both to evolve spiking neural
networks and to train the LSTM networks with.

Frequency detection. The goal is to classify four different ‘frequencies’ (fire rates)
that are fed into the network. There is one output per frequency to classify and this
should be 1 when the corresponding frequency is detected, 0 otherwise. To make sure
the detection isn’t based on integration, the integrals of the different frequency parts
are equal. An extra input is provided to indicate the start of a new frequency block
and request output of the previous block (output at other moments doesn’t influence
fitness).

Gradient. In this task the network was asked to classify the direction of a gradient:
the network had to determine whether the gradient was positive (increasing input
values) or negative (decreasing input values). In other words, the network had to
detect the sign of the first derative.

 Inverse binary. A rather simple task: series of 0’s and 1’s are given as input, the
network should output the opposite. Thus, 0 gives 1 and 1 gives 0.

Inverse continuous. A more advanced version of the previous task, this continuous
inverse also requires the networks to output the inverse of the input, but the input is
now a continuous value between 0 and 1. A simple formula that describes this
behaviour is out(t) = 1 – in(t) (where t is the current time step).

Memory. In this very difficult task, the network has to repeat a previously seen
input on command. First, either 0 or 1 is given as input for some time, after which a
period of no input follows. Once the second input line signals by switching to 1, the
originally seen input should be given as output. Before this, the output is unimportant
and doesn’t influence the fitness value.

Sines. A difficult classification task. Networks are asked to classify two types of
sines, where the frequency is equal, but the amplitude is scaled with either 0.5 or 1.0.

Switch. A task where an internal state is an absolute necessity. We tried two
versions, in which the input-line has a base value of 0 or 1. The initial desired output
value is always 0, and has to be kept so until the input line indicates a switch. This is
done by a short (1 time step) peak (i.e. from 0 to 1, or vice-versa). The output has to
be kept at 1 until the next switch signal, etcetera. Summarising, each cycle the input
is the inverse of the base value; the output value should be inversed (switched).

Temporal XOR. One single input value is randomly chosen every time step and is
either 0 or 1. The corresponding output should be equal to in(t) xor in(t-1). In other
words, the XOR of the last two inputs should be given as output.

We will give more details on the specific data sets we used in our experiments in
the section on the results.

4.1 Evaluating Long Short-Term Memory

Evaluating the LSTM network is done by applying an input from the test set and
measuring the error between output and target, this resulting total error is the
summed squared error of all output cells for the duration of all sequences.

2sequence error (() ())k k
t k output

d t y t
∈

= −∑ ∑ (8)

Training is finished when either the maximum amount of training period is
reached or the error has reached the minimum specified value. After training the
network is tested on the test dataset and its output is dumped to a file. This procedure
is repeated for a given number of trials.

4.2 Evolving Spiking Circuits

In order to use the spike response model for artificial evolution, we applied some
simplifications to this standard model in order to avoid overly large genomes and
limiting the amount of computation needed. Our derivation of the model is based
mainly on the model as described by Floreano and Mattiussi [13], and full details of
the model used here are omitted due to space reasons, details are listed in our
preceding technical report [19]. The software we used is based on i [17], an
application written for evolutionary robotics with spiking circuits. We started with
this application and developed it further to suit our needs.

The number of cycles that each network was tested for a task depended on the
task, but the fitness function was always the same, based on the difference between
actual and target outputs,

() 1 () ()x x
x

fitness t out t tar t= − −∑ (9)

where fitness(t) is the fitness value at cycle t, outx(t) and tarx(t) are the actual and
target output values, respectively, of neuron x at cycle t. The fitness values of all
cycles are summed and divided by the total number of cycles to normalize between 0
and 1. An output value was not required for every input; for a few tasks, target output
was only given for some pre-defined intervals. Output values outside these intervals
didn’t influence the fitness.

After determining fitness values for all individuals in a population, reproduction
can be done. We’ve used truncation selection: keep only the best individuals for
reproduction, dispose of the rest. For improved evolutionary stability, elitism was
used in reproduction: by always retaining the best individual (without modifying the
genome) we ensured that our search wouldn’t loose the current best solution.

The evolution parameters used for the experiments varied: for particular tasks the
population size was changed between 60 and 500, while the default size was 120.
For truncation selection, the best 25% of the population was always selected for
reproduction. The crossover and mutations rates were 0.1 and 0.05, respectively. The
maximum number of generations was 300, but fewer generations were enough in
most cases.

5 Results

We have tested both types of networks, using the techniques described above, on the
temporal tasks that were explained earlier. Thus, we trained LSTM networks for
these tasks and evolved spiking circuits for exactly the same tasks, to enable us to
make a comparison.

Our LSTM network topology consists of one input unit, one output unit and no
additional conventional hidden units. The hidden layer consisted of two memory
blocks, each with 2 memory cells, which was enough for most of the experiments we
conducted, and the learning rate was set to 0.1 by default.

Most of the parameters for artificial evolution and spiking circuits have already
been described, but there are a few parameters that haven’t been settled yet. Almost
all used data sets consist of 200 cycles, making evolution quite fast: each individual
only needs to be tested for 200 cycles (1 epoch), as results turned out to be constant
when more epochs were used. Only the frequency detection data set was significantly
larger: 800 cycles.

All tasks were evolved with 5 interneurons in total, we experimented with both
more and less interneurons, but more didn’t give much better results and less wasn’t
always enough. For other (task-dependent) settings, we refer to Table 1. We first tried
all tasks with the default settings (40 neuron updates per cycle and 20 neuron updates
to determine output values), but had to change this in a few cases (essentially to
increase resolution). We will now describe the results we obtained for each task
separately.

Frequency detection. Evolution is very good at finding simple strategies that get a
relatively high fitness, but these strategies are not always in accordance with the
objective. This is also the case for the frequency detection task: two frequencies seem
to be recognised and that gives already fairly good fitness, but the other frequencies
are ignored and that wasn’t the purpose of the task. LSTM also seems to have

Table 1. Overview of all results. Properties of each task are given, also some spiking circuit
settings and the sum squared error of both types of network. Task properties: #i = number of
input values, #out = number of output values, Target? = target output defined for?, State? =
internal state required to accomplish task. Spiking circuit settings: Bias? = bias receptor
added?, #updates = number of neuron updates per cycle, #updOut = number of updates used to
determine output value

Task Spiking circuits LSTM
Name #in #out Target? State? Bias? #updates #updOu

t
SSE SSE

Frequency
detection

2 2 Some Yes No 40 20 0.250 0.2684

Gradient 1 1 All Yes Yes 40 20 0.182 0.0262
Inverse binary 1 1 All No No 40 20 0.000 0.0742
Inverse
continuous

1 1 All No No 100 80 0.003 0.0101

Memory 2 1 Some Yes Yes 40 20 0.500 0.1111
Sines 2 1 Some Yes Yes 80 20 0.455 0.2954
Switch 1 1 All Yes Yes 40 20 0.118 0.8914
Temporal XOR 1 1 All Yes Yes 40 20 0.250 0.4989

problems with this task; it only discriminates between the signals containing pulses
and the low threshold input, surely not the preferred behaviour.

Gradient. We had to use two different data sets for LSTM: in the original data set,
the slopes ended at different values (i.e. no simple ascending from 0 to 1) and this
produced unpredictable results. Instead of providing a classification, the output was
the inverse of the input (a very surprising result). In the second dataset, all sequences
end at the same value (i.e. ascending or descending to 0.5) and LSTM networks are
able to classify correctly. We had no such oddities with evolution of spiking
networks, but no good individuals were evolved whatsoever. A commonly found
strategy was to give high output when the input is high and keep it that way for some
time, this turned out to work well. (Similar strategies were found when we tried other
data sets.)

Inverse binary. LSTM could only produce viable results when the duty cycle was
raised to 0.5. In that case, the trained network was on par with our evolved circuits
that were perfect solutions. The LSTM networks were just slightly less perfect, as the
network always needed a cycle to adjust it’s output to the changing input. Spiking
circuits didn’t need this, they gave the correct inverse even when the input was
randomly chosen between 0 and 1 each cycle.

Inverse continuous. Performance of the LSTM network was equal to that of the
previous task: again the duty cycle had to be raised. The evolved spiking circuits did
fairly well again also, but the resolution of input and output is a bottleneck here. As
we are working with a (discrete) number of spikes each cycle and not with
continuous numbers (as LSTM), it is very important that input and output resolution
are in accordance with the number of neuron updates each cycle.

Memory. This task shows us the profound advantages of learning over
evolutionary search: LSTM can learn this task without too much effort, while our
evolutionary approach with spiking networks is unable to reproduce the previously
seen input when requested.

Sines. This task proved to be too difficult to be solved by evolution as we used it.
Even though fitness reached 0.75 at various attempts, the behaviour of the network is
far from right and it cannot classify the input sine waves. As for LSTM, classifying
the sines fails completely.

Switch. The results that we obtained with this task gave us an interesting
difference between the two network types. The spiking neural networks found by
evolution shows nearly perfect behaviour, only suffering from the fact that it cannot
switch its state immediately: it needs two cycles to complete its output change. The
same lagging behaviour was seen in the LSTM network, but certainly not with the
proposed data set: a 1-cycle input signal was insufficient to switch the output for all
topologies tested, the networks simply kept their output at 0. It was not until we
lengthened this signal to half (!) of the sequence’s length, that the network showed
behaviour more like that of the evolved spiking circuit.

Temporal XOR. This (unavoidable) XOR-task posed serious problems for both of
our approaches. We did not succeed in successfully evolving a spiking neural
network capable of solving the described task. All our evolutionary runs (partially
with different spiking circuit parameters) came up with an efficient solution of fitness
0.75: the output is always high, except after two subsequent zeroes. None of the
many tested LSTM topologies could find a solution for the temporal XOR task as

described. Output and error remained around the 0.5 during runs after learning. An
efficient solution, but not quite what we were after, was found by imposing a delay
(only giving 0 as input) after each offered input pair to be XORed.

6 Comparison

The different tasks give widely varying results for the types of networks
experimented with: some tasks can be solved by both without too much effort, but
this isn’t the case for all tasks and some turned out to be infeasible with the
parameters and techniques we used.

No serious problems were encountered with the two inverse problems, for which
no internal state was required and feed-forward (non-recurrent) neural networks
could also be used. As already mentioned, the resolution of input and output is an
important issue here and that’s something that counts for many real tasks: using rate
coding in spiking circuits make that only a certain amount of detail can be dealt with,
LSTM doesn’t have this problem because it deals with analogue values internally. If
very little differences in input (or output) make large differences in a task, it may be
more straightforward to use a second-generation network like LSTM. Another
possibility is to try pulse-coding schemes with the spiking circuits (e.g. spike time
coding) to make encoding input and
output values more precisely.

Too difficult for both network types
were the sine classification, temporal
XOR and frequency detection tasks,
but these should be investigated
further: we think that especially spiking
circuits could perform better if we
improved them by adding synaptic
plasticity. Evolution is good at finding
simple strategies to increase fitness, but
these tasks were too difficult to evolve.
Individuals that obtained a higher
fitness were just lucky, not better at the
task at hand. Evolvable tasks show an
increasing maximum fitness during an
evolutionary run, runs with too difficult
tasks show a more or less constant
fitness (see fig. 3).

LSTM performed better than spiking
networks at two tasks: the gradient sign
detection and memory tasks. Evolution
was unable to find suitable spiking
networks for these, which is not
surprising for the memory task: a long
time relation between input and output

Fig. 3. Evolvability, fitness of best individuals
over 100 generations. Typical increasing fitness
value, the task is evolvable (Top). The
maximum stays at the same low value and
higher values are just lucky individuals, as the
fitness drops back again: not evolvable
(Bottom)

has to be found, basically by coincidence. That the gradient sign detection also gave
problems may possibly be attributed to the stochastic rate coding: it may be difficult
to accomplish this when the gradient is low and the stochastic receptors inflict even
more noise in the spike trains.

The one task that spiking circuits were better at than LSTM was the switching
task. LSTM networks are unable to completely revise their internal state based on
one single input, whereas this is no problem for spiking networks: the neurons are
updated 40 times each cycle and a one-cycle change of the input can have a large
impact on the internal state of the whole network. This change wasn’t always
finished within one cycle, but the best networks completed the switch even after the
input was back to normal in the next cycle.

7 Discussion

Neural structures as found in nature are very well suited for the processing of
temporal information: these networks have an internal dynamic memory state that
may be influenced for a shorter or longer time by its inputs – long and short term
memory.

We covered some basics of sigmoidal recurrent networks and mentioned some
learning algorithms, BPTT and RTRL that can be used to learn temporal correlations.
Furthermore, we explained Long Short-Term Memory, a particular strong type of
recurrent neural network, as it doesn’t suffer from error flow problems as most
others.

Spiking neural networks, incorporating third generation neurons, use the element
of time in communicating by sending out individual pulses. We have covered the
very general and realistic spike-response model, a powerful and realistic model for
using pulse coding in neurons. Standard neural network training algorithms use rate
coding and cannot be directly used satisfactory for spiking neural networks, therefore
we have used evolution to find suitable network topologies and parameters.

We have chosen two specific network types, one from each network generation,
and have tested them on a number of dynamic tasks. Some tasks proved too difficult,
some were no problem for both networks. There are some fields though where either
LSTM or spiking circuits performed better. The difference can be largely brought
back to the differences between second and third generation networks. LSTM is an
architecture combined with a learning method that is aimed at finding temporal
correlations and working with analogue values. Using so-called forgetting gates [18]
with LSTM might improve the performance on the more difficult tasks. Spiking
circuits work with individual pulses and evolving network properties is a very
different way of finding solutions and is not always good enough, which we have
shown. But although it is difficult to improve much on LSTM, there is much work to
be done on spiking neural networks. Spike-timing dependent synaptic plasticity uses
exact spike timing to optimise information-flow through the network, as well as it
imposes competition between neurons in the process of unsupervised Hebbian
learning. We think such a form of learning would be very beneficial for spiking
circuits and could make it possible to find solutions for the more difficult tasks.

8 Acknowledgments

We would to thank Marco Wiering for his supervision during these experiments. This
paper is preceded by a technical report that includes more technical details of the
experiment discussed here.

References

1. Gerstner, W. Spiking Neurons in Maass, W. & Bishop, C. M. (eds.) Pulsed Neural Networks,
MIT-press (1999).

2. Gerstner, W., Kistler, W. Spiking Neuron Models, Cambridge University Press (2002).
3. Maass, W. Synapses as Dynamic Memory Buffers, Technische Universität Graz (2000).
4. Thorpe, S., Delorme, A., Van Rullen, R. Spike based strategies for rapid processing, Neural

Networks, vol. 14(6-7), p.715-726 (2001).
5. Elman, J.L. ‘Finding Structure in Time’. In: Cognitive Science, vol. 14, p.179-211 (1990).
6. Kool, A. Literature Survey, Center for Dutch Language and Speech, University of Antwerp

(1999).
7. Williams, R.J. & Zipser, D. ‘A Learning Algorithm for Continually Running Recurrent

Neural Networks’. In: Neural Computation, 1, pp.270-280 (1989).
8. Williams, R.J. & Peng, J. ‘An Efficient Gradient-Based Algorithm for online Training of

Recurrent Neural Network Trajectories’. In: Neural Computation, 2, pp.490-501 (1990).
9. Pearlmutter, B.A. ‘Gradient Calculations for Dynamic Recurrent Neural Networks: A

Survey’. Draft of July 20, 1995 for: IEEE Transactions on Neural Networks (1995).
10. Schmidhuber, J. & Hochreiter, S. Guessing can Outperform many Long Time Lag

Algorithms, Technical note IDSIA-19-96 (1996).
11. Lin, T., Horne, B. G., Tino, P. and Giles, C. L. ‘Learning long-term depencies in NARX

recurrent neural networks’. In: IEEE Transactions on Neural Networks, vol. 7(6), p.1329
(1996).

12. Hochreiter, S. & Schmidhuber, J. Long Short-Term Memory, Neural Computation vol. 9(8),
p.1735-1780 (1997).

13. Floreano, D. & Mattiussi, C.. `Evolution of Spiking Neural Controllers for Autonomous
Vision-Based Robots'. In Gomi, T., ed., Evolutionary Robotics. From Intelligent Robotics to
Artificial Life. Tokyo: Springer Verlag (2001).

14. Vreeken, J. Spiking neural networks, an introduction. Institute for Information and
Computing Sciences, Utrecht University (2002).

15. DasGupta, B. & Schnitger, G. The power of approximating: a comparison of activation
functions, Advances in Neural Information Processing Systems, vol. 5 p.363-374 (1992).

16. Zufferey, J.C., Floreano, D., Van Leeuwen, M. & Merenda, T. ‘Evolving Vision-based
Flying Robots’. In: Bülthoff, Lee, Poggio, Wallraven (eds), Proceedings of the 2nd
International Workshop on Biologically Motivated Computer Vision, LNCS, Berlin,
Springer-Verlag (2002).

17. Van Leeuwen, M., Evolutionary blimp & i. Internship report, Institute for Information and
Computing Sciences, Utrecht University (2002).

18. Gers, F.A., Schmidhuber, J. & Cummins, F. ‘Learning to forget: Continual prediction with
LSTM’. In: Neural Computation, vol. 12(10) p.2451-2471 (2000).

19. Koopman, A.C.M., Van Leeuwen, M., Vreeken, J. ‘Dynamic Neural Networks, comparing
spiking circuits and LSTM’. Technical Report UU-CS-2003-007, Institute for Information
and Computing Sciences, Utrecht University, 2003

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

