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Abstract—The manufacturing process of car body parts is a
complex industrial process where many machine parameters and
material measurements are involved in establishing the quality
of the final product. Data driven models have shown great
advantages in helping decision makers to optimize this kind of
complex processes where good physical models are hard to build.
In this paper a framework for on-line process monitoring and
predictive modeling is proposed to optimize a car body part
production process. Anomaly detection plays an important role
in this framework as it can provide an early alert for operators
on the production line using a complex set of machine parameters
and material properties. In this paper an anomaly detection
algorithm, GLOSS, that is successfully implemented as the first
module in the process, is introduced. GLOSS finds local outliers
in high dimensional mixed data-sets using a relative density
measure that takes the global neighborhood into account while
searching for outliers in subspaces of the data. An overview of
the application and implementation of the algorithm in the car
body part press shop is presented.

Index Terms—Anomaly Detection, Industry 4.0
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I. INTRODUCTION

In the car body parts manufacturing industry, data mining
and on-line automated quality control are emerging and im-
portant topics [1], [2]. In an Industry 4.0 factory, machines and
products are interlinked with each other as one collaborative
process, also known as the Internet of Things [3]. On-line qual-
ity control of the products and the prediction and avoidance of
defects are among the key goals of applying data analytics and
optimization to such processes. In the car body parts industry,
blanks of sheet metal are cut from a coil and pressed into
car body parts such as side frames, roofs as well as structural
parts like B-pillars. For different parts, different materials are
required and different machine settings are used. Due to the
high variation as well as high dimensionality in both material
properties and machine settings, the process is a very complex
one with lots of parameters that influence the final product.

To estimate where defects might occur, data mining tech-
niques have to be applied at the very beginning of the
production process. Anomaly detection [4] plays an important
role in this early stage, since most of the parameters are still

unknown. However, applying anomaly detection in this real-
world setting is a major challenge. The dimensionality of
the problem is large and the data consists of heterogeneous
coil types and suppliers used for many different body parts.
Using anomaly detection techniques on material properties
allows for the detection of anomalous sheet metal coils and
more precisely, regions in the sheet metal that could later
lead to problems in the production process. The results of
anomaly detection algorithms can be presented to experts
to gain additional knowledge about the process. In the near
future, the results could directly be used in the press line, and
depending on the anomaly scores, a “careful” flag could be
set. Further steps in the optimization of the production process
can be done by data-driven predictive models and model-based
optimization algorithms [5].

In Section II the car body parts manufacturing process
is explained into detail. Next, in Section III a data-driven
framework is proposed for the manufacturing of car body parts
together with one of the main modules, anomaly detection. A
high-level overview of anomaly detection algorithms is given
in Section IV. Finally, a novel anomaly detection algorithm
designed specifically for the framework is introduced and early
results are discussed in Section V and VI.

II. MANUFACTURING CAR BODY PARTS

The manufacturing process, in the current study, consists of
two main processes and a buffer period. First, the incoming
steel coils are unrolled and cut into individual blanks. During
the cutting process, the following properties are measured:
Impulse Magnetic Process On-line Controller (IMPOC)

is an advanced measurement commonly used in steel
manufacturing plants that measures the residual magnetic
field strength of the material [6].

Oil Levels on the surface of the blanks are considered to
be an important factor in the stamping process. The
amount of lubricant affects the friction and thus plays
an important role in the deep drawing process of sheet
metals.

Roughness of the surface.
Thickness of the material.



Fig. 1. A framework for optimizing and monitoring a car body parts
manufacturing process.

Peak Count of the surface, representing the number of peaks
per square meter.

The steel blanks are then stacked on top of each other and
stored in the buffer. After a certain time in the buffer, the stack
of blanks are moved to the press line. At the press line the
blanks are pressed into a specific car body part. Depending on
the body part produced, the press line consists of a number
of operations, each of them controlled by a large variety of
machine parameters. Anomaly detection is needed to detect
deviating material properties to warn the press line controllers
of risks as early as possible. When blank properties are
deviating significantly or abruptly, it might affect the quality of
the produced parts. When these sudden changes are identified
before entering the press line, the machine parameters can be
adjusted in advance, reducing the potential number of defects,
resulting in higher utilization and therefore reduced cost.

III. A FRAMEWORK FOR ON-LINE PROCESS CONTROL

The optimization of such processes is far from trivial and
receives increasing attention in research. In the field of Opti-
mal Operational Control [7], [8] and Real Time Optimization
(RTO) [9], [10] static mathematical models are constructed for
the industrial process and used in the optimization procedure to
search for good operational parameters for a specific process.
These model-based control theories include both linear and
nonlinear systems where set points of the controllers are
assumed to be known. The downside of these mathematical
models is that external disturbances and noise are usually not
included and that the process of specifying these models can be
very hard. Another downside is that the optimal configuration
of operational parameters is almost never known and therefore
these model based approaches will not be able to completely
optimize the production process. Because of these limita-
tions a data-driven approach for monitoring and optimizing
production processes is proposed in this paper. Because the
data-driven modeling requires minimal understanding of the
mechanisms of the process and more importantly, the noises
in measurements or machine settings can be reduced largely by
incorporating a large amount of data, resulting in robust and
reliable models. The proposed framework has to deal with
high dimensional data coming in real-time. The framework
needs to provide valuable feedback to the domain experts,
decision makers and process controllers about the current and
preferably also the future situation of the production process.

The proposed framework globally consists of the following
steps: First data is collected per process unit (step) in a
centralized data management system. The data being collected
first for the car body part stamping process comes from
the cutting line where material properties are measured (see
Figure 1). Second, unsupervised algorithms such as anomaly
detection are applied on the measurements to quickly detect
deviations and interesting regions in the incoming blanks.
Finally, predictive data driven models such as Random Forests
[11] can be trained on the collected historical data containing
material properties, machine parameters and quality indicators,
to predict the final quality of the incoming steel blanks before
stamping. Based on predictive models, the machine settings
can be optimized to achieve a better predicted product quality
using model-based optimization procedures [5].

IV. ANOMALY DETECTION IN INDUSTRY

In industry, anomaly detection algorithms are used in many
areas to detect possible flaws in systems and processes [4].
Most applications of anomaly detection can be found in the
security [12], [13], insurance and banking sectors [14], where
anomaly detection algorithms are applied to detect possible
intrusions and fraud cases, respectively. Anomaly detection in
the car manufacturing industry is not applied on a wide scale
as of yet, although several applications exist. For example,
anomaly detection can be used in mixed-product assembly
lines to detect abnormal logistic states (ALSs) [15]. These
states seriously hinder efficient delivery of materials to the
assembly line and it is therefore of major importance to detect
them as early as possible. Anomaly detection can also be used
in the automatic inspection of metal parts by using thermo-
graphic images [2]. Using these thermal images, cracks and
other surface defects can be detected on the fly using existing
anomaly detection procedures. However, a complex process
application such as in this paper has not been reported yet.

V. GLOSS: ANOMALY DETECTION FOR COMPLEX HIGH
DIMENSIONAL DATA

Many anomaly detection algorithms already exist, from
statistical anomaly detection algorithms [16] that detect global
outliers to clustering based anomaly detection algorithms [17].
Most popular outlier methods used today are density based lo-
cal outlier algorithms such as Local Outlier Factor (LOF) [18],
Local Outlier Probabilities (LoOP) [19] and Local Correla-
tion Integral (LOCI) [20]. These outlier detection algorithms
compare the densities of data points with the relative densities
of the direct neighboring data points. The main bottleneck of
these local outlier algorithms is that they suffer from the curse
of dimensionality when the dimensionality grows to several
hundreds of parameters. That is why for the complex task of
detecting anomalous steel coils in this high dimensional mixed
data set, Global Local Outliers in Sub Spaces (GLOSS) is
introduced. GLOSS is a local outlier detection algorithm based
on the existing outlier detection algorithm LoOP [19] com-
bined with a subspace search procedure from High Contrast
Subspaces (HiCS) [21]. The algorithm searches for outliers in



Fig. 2. Synthetic dataset with six dimensions, consisting of a mixture of
samples from three distributions. Shown are the global 6D space projected
onto 2D (top left), and three 2D subspaces (other). The implanted outlier (red
star) can only be detected in Subspace 1 (top right) if local outlier detection
uses its global neighbors (yellow diamonds) instead of its subspace neighbors.

subspaces of the data instead of the global feature space. In
practice this means that each coil is split into 99 overlapping
segments in the length of the coil. Each segment (with a length
of 2% of the complete coil) is assigned an outlier probability
using the relative density between this segment and the same
position on globally similar coils. Because the data set consists
of several different mixtures (steel grades and suppliers), it is
important that the segments are related to the coils’ global
neighborhood instead of the local neighborhood. When only
considering local neighborhoods, local outliers could “hide”
behind different coil types (and thus not be detected).

Figure 2 illustrates the problem that we consider on a syn-
thetic dataset. The data consists of three normally distributed
clusters in six dimensions. When considering all the data
points, the data point depicted by the red star is not a local
outlier in any of the subspaces; neither in the global nor in
any of the two-dimensional subspaces (only three shown).
However, when only considering the data point’s neighbors
in the global space, depicted with yellow diamonds, we can
observe that the red star is a clear outlier in the 2D subspace
shown in the top right plot: it is relatively far away from
other data points belonging to this component of the mixture.
This special type of outliers we call Local Subspace Outlier in
Global Neighborhood and the aim of the proposed algorithm
GLOSS is to detect these outliers as well as more regular
global and local outliers. Existing outlier detection algorithms
are unable to accurately mark the above outliers, whereas our
method can, especially in high-dimensional data.

On a high level, the algorithm uses the following procedure.
First of all, the global k-neighborhood is computed for each
data point. After that, for each data point a local outlier
detection method is used to compute outlier scores for each
considered subspace, relative to its global neighborhood. As
mentioned, the instantiation in this paper uses LoOP because
it computes (normalized) probabilities rather than hard-to-
interpret scores. Finally, for purposes of ranking each data
point is assigned the maximum probability assigned to one of
the considered subspaces. In more detail, we combine and

adapt a combination of LoOP and HiCS as follows. The
standard distance of LoOP is altered to incorporate a feature
subspace F and a global neighborhood relation G:

σ(pF , Gp) =

√∑
s∈Gg

d(pF , sF )2

|Gp|
, (1)

where pF and sF are data points p and s projected onto
subspace F ∈ F and Gp is the set of points in the global
neighborhood of p. Then, based on the probabilistic set
distance (pdist) as defined in LoOP [19], we define the
Probabilistic Global Local Outlier Factor PGLOF as:

PGLOFλ,Gp(pm) =
pdist(λ, pm, Gp)

Es∈Gp [pdist(λ, s,Gs)]
− 1 (2)

Where λ is a constant that is set to 3 for a 98% confidence
interval. Finally, subspace outlier probabilities are computed
using PGLOF as defined in Definition 1, i.e., with the global
neighborhood projected onto the features in the subspace.

Definition 1 (Global Local Outlier in Subspaces): The prob-
ability of a point p being a global local outlier in subspaces
is defined as:

GLOSSS(p) = max

{
0, erf

(
PGLOFλ,S(p)

nPGLOF ·
√
2

)}
where nPGLOF = λ · Stddev(PGLOF ) the standard devia-
tion of PGLOF values, assuming a mean of 0, and erf is the
standard Gauss error function.

VI. APPLICATION TO INDUSTRY

The GLOSS algorithm is applied on an industrial proprietary
dataset made available to us by the BMW Group at plant
Regensburg, Germany. This dataset is the original motivation
of GLOSS since it is high dimensional and consists of a highly
mixed set of steel coils from different suppliers and steel
grades. The steel coil dataset consists of 2204 coils (data
points) from the time period December 2014 to December
2015. Each coil is represented by 1188 features, grouped into
99 12-dimensional subspaces. Each subspace represents 2%
of the coils length and consists of 3 tracks in width. Each
subspace consists of 3 averaged IMPOC measurements and 9
averaged Oil level values (3 for each track). GLOSS and LoOP
are compared using all global features. Other algorithms are
not included in the evaluation because of the high dimension-
ality of the data; run times would be unreasonably long. Two
sample coils of the results are shown in Figures 3 and 4.

It can be noticed from Figures 3 and 4 that GLOSS is capable
of detecting a complete outlier region in the coil, while LoOP
is only capable of capturing the sudden changes at the start
and end of these anomalous regions. For example, in coil #1
there is a region near the end of the coil with a sudden drop
of oil levels and IMPOC. LoOP is capable of detecting the
sudden drop at the beginning of this region but reports that
everything is fine once the oil levels are being stable again.
GLOSS on the other hand detects this complete region of low
IMPOC and oil levels as being unexpected behavior for this
coil. Process experts confirm that the results given by GLOSS
are more informative and leading to better outlier rankings.



Fig. 3. Results for coil #1 Top: GLOSS (red line) and LoOP (blue line)
outlier probabilities for each of 99 consecutive coil segments. Middle: IMPOC
measurements over the whole length of the coil, both for this particular coil
(black) and averaged over its 20 global neighbors (green). Bottom: Oil level
measurements visualized in 2D, representing the entire surface of the coil.

Fig. 4. Results for coil #2. Details identical to that of Figure 3.

VII. SUMMARY AND OUTLOOK

A global framework for data driven control of complex
production processes is proposed that aims to predict and
optimize the quality of the final products. One of the main
modules contributing to this framework is a novel anomaly
detection algorithm for detecting anomalies in high dimen-
sional mixed data sets; GLOSS. The anomaly detection module
is applied successfully in a car body parts stamping process
where detecting outliers as early as possible can be very
helpful/beneficial. Several alternative state-of-the-art anomaly
detection algorithms are assessed and local outlier detection
is compared with GLOSS on a high dimensional dataset of
steel blanks. Process experts from BMW confirm that results

obtained with GLOSS seem to possess a higher quality and is
easier to interpret.

The global framework needs many additional modules, such
as the predictive data driven models and meta-model optimiza-
tion modules to realize and complete the on-line modeling
and model-based optimization for the industrial production
process.
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