Noname manuscript No.
(will be inserted by the editor)

Online Summarization of Dynamic Graphs using
Subjective Interestingness for Sequential Data

Sarang Kapoor! - Dhish Kumar Saxena?
Matthijs van Leeuwen?

Received: date / Accepted: date

Abstract Many real-world phenomena can be represented as dynamic graphs, i.e.,
networks that change over time. The problem of dynamic graph summarization,
i.e., to succinctly describe the evolution of a dynamic graph, has been widely
studied. Existing methods typically use objective measures to find fixed structures
such as cliques, stars, and cores. Most of the methods, however, do not consider the
problem of online summarization, where the summary is incrementally conveyed to
the analyst as the graph evolves, and (thus) do not take into account the knowledge
of the analyst at a specific moment in time.

We address this gap in the literature through a novel, generic framework for
subjective interestingness for sequential data. Specifically, we iteratively identify
atomic changes, called ‘actions’, that provide most information relative to the
current knowledge of the analyst. For this, we introduce a novel information gain
measure, which is motivated by the minimum description length (MDL) principle.
With this measure, our approach discovers compact summaries without having to
decide on the number of patterns. As such, we are the first to combine approaches
for data mining based on subjective interestingness (using the maximum entropy
principle) with pattern-based summarization (using the MDL principle).

We instantiate this framework for dynamic graphs and dense subgraph pat-
terns, and present DSSG, a heuristic algorithm for the online summarization of
dynamic graphs by means of informative actions, each of which represents an in-
terpretable change to the connectivity structure of the graph. The experiments on
real-world data demonstrate that our approach effectively discovers informative
summaries. We conclude with a case study on data from an airline network to
show its potential for real-world applications.

Keywords Graph Summarization - Maximum Entropy Principle - Subjective In-
terestingness - Dynamic Graphs

1 Department of Computer Science and Engineering, Indian Institute of Technology, Roor-

kee, India; skapoor@cs.iitr.ac.in

2 Department of Mechanical and Industrial Engineering, Indian Institute of Technology,
Roorkee, India; dhishfme@iitr.ac.in

3 Leiden Institute of Advanced Computer Science, Leiden University, The Netherlands;
m.van.leeuwen@liacs.leidenuniv.nl

2 Sarang Kapoor, Dhish Kumar Saxena and Matthijs van Leeuwen

1 Introduction

Many real-world phenomena, including interactions between people (e.g., social
media, e-mail), web browsing, transport and logistics operations, and asset man-
agement, can be modelled in terms of the relationships between entities. That is,
the corresponding data can be naturally represented as a network or graph, where
vertices represent the entities and edges represent their relationships. When these
relationships change over time, the graphs are called dynamic graphs.

The problem of static graph summarization has been widely studied, e.g., to
efficiently store large volumes of data (Navlakha et al., 2008); improve query effi-
ciency (LeFevre and Terzi, 2010); visualize large graphs (Koutra et al., 2014); and
provide high-level descriptions (Goebl et al., 2016). Some of the popular methods
rely on compression (Koutra et al., 2014), aggregation of vertices/edges (LeFevre
and Terzi, 2010), or finding meaningful patterns (Goebl et al., 2016).

The need to incorporate the temporal dimension has led to the introduction
of the problem of dynamic graph summarization. Lately, this problem has gained
much attention. Here, the focus is on finding a minimal set of temporal structures
that describe a dynamic network or graph. A typical way to achieve this is by con-
sidering a dynamic network as a sequence of static graph states/snapshots (Sun
et al., 2007; Shah et al., 2015; Adhikari et al., 2017) and subjecting those to static
graph summarization methods. Such sequences of static graphs, constructed by
segmenting a dynamic graph into different states, can be referred to as sequential
data. For instance, the method proposed by Shah et al. (2015), namely Time-
Crunch, extends VoG, a method for static graph summarization by Koutra et al.
(2014). It creates a summary by stitching together the graph structures found in
different snapshots while minimizing the global description length of the dynamic
network. TimeCrunch uses a predefined vocabulary of graph structures, including
cliques, stars, cores, and bipartite cores.

Most existing methods, however, do not consider the problem of subjective on-
line summarization, where the summary is iteratively and incrementally conveyed
to the analyst as the graph evolves. In that, the analyst is progressively updated on
all changes up to the current state of the network, relative to his/her prior knowl-
edge. This problem has two key characteristics that differentiate it from posthoc
summarization and therefore require a different approach. First, at any state, it
is only possible to use data that has been observed until this very moment; it is
impossible to use parts of the dynamic graph that lie in the future. Second, each
change that is observed and communicated to the analyst should be relative to
what that analyst already knows about the graph.

One motivation for such an approach comes from airline network analysis,
where vertices represent airports and (directed) edges represent operating flights or
routes between two airports. As the edges in an airline network change with time,
it can be considered as a dynamic network. Here, an analyst may be interested
in learning the informative changes, for example, as to how the traffic load is
changing in real-time between different airports. An airline schedule is generated
based on comprehensive knowledge on air traffic load management (Bazargan,
2016). Hence, a domain analyst may well have prior knowledge/expectation at
the block-hour level, of the total number of routes operated by an airline, total
number of flights, number of unique routes from each airport, or even the densely
connected set of airports. However, delays are a reality, as the schedules are not

Online Summarization of Dynamic Graphs using Subjective Interestingness 3

necessarily robust enough to perfectly factor and accommodate them. Hence, a
compact and subjective online summarization bears real-time utility for airliners.
It is critical to note that the application and utility of this approach is not limited
to airline domain but spans across many other real-world scenarios, including
evolving co-authorship network, co-actor network, and interaction network.

Our first significant contribution is the introduction of a novel, generic frame-
work for subjective interestingness for sequential data. For this, we build on pre-
vious work by De Bie (2011), who first introduced a formalization of subjective
interestingness for exploratory data mining, in which the analyst’s prior beliefs are
modelled as constraints and a background distribution—representing the current
knowledge of the analyst—is derived using the maximum entropy principle. The
novelty of our framework for sequential data is two-fold. First, the patterns that
we define, called ‘actions’; represent atomic changes to the data that provide in-
formation relative to the current knowledge of the analyst. Second, we introduce
a novel information gain measure that is motivated by the minimum description
length (MDL) principle (Griinwald, 2007). With this measure, our approach can
automatically discover compact summaries without having to decide on the num-
ber of patterns. As such, we are the first to combine approaches for data mining
based on subjective interestingness (using the maximum entropy principle) with
pattern-based summarization (using the MDL principle).

Our second significant contribution is the instantiation of this generic frame-
work for dynamic graphs. As van Leeuwen et al. (2016) instantiated subjective
interestingness for dense subgraph discovery from (static) graphs, indeed we here
build on their results. The concrete actions that we define, include add, remove,
update, shrink, split, and merge. An instance of each of the action types is pre-
sented in Figures la-1f, for a toy example depicting an evolving airline network.
Each of these actions adds, updates, and/or removes one or more dense subgraphs
to/in/from the current summary, represented by set Cs for each state s. The set
C; comprises of the analyst’s prior beliefs (represented by B) and the dense sub-
graphs as patterns (represented by P;). In Figures la-1f, we indicate the initial
summary C! and final summary C¥ after performing the actions in each state. By
iteratively communicating these actions to the analyst, the analyst learns about
the relevant changes in the graph (as shown in Figure 1g) relative to what they
already know. The use of our information measure ensures that we always commu-
nicate actions that provide more information about the data than that is required
to describe the patterns and corresponding actions, effectively making sure that
the analyst always gains information.

Our third and final significant contribution is DSSG, a heuristic algorithm for
the online summarization of dynamic graphs by means of iteratively discovering
actions. Guided by the information gain criterion, it always considers all possible
types of actions but only returns that action that provides the largest gain.

The remainder of the paper is organized as follows. The relevant literature
is summarized in Section 2, followed by notation and preliminaries in Section 3.
Our framework for subjective interestingness for sequential data and its online
summarization is presented in Section 4.1 and Section 4.2, respectively, leading
to the introduction of the problem of online summarization of dynamic graphs
in Section 4.3. In this context, the DSSG algorithm is presented in Section 5.
The experimental results on publicly available real-world datasets are discussed in
Section 6, followed by a case study in the airline domain in Section 7. Important

4 Sarang Kapoor, Dhish Kumar Saxena and Matthijs van Leeuwen
i i A 1 A i A
¥ ¥ A Lt A LY A
_ &8 6 B &
P4 P4 — P4
.J\‘c_}
SEe
X x| X
{H! \H! \E! \H!
4 . /.'r 4 - /tr - /:r
P3 (I.G:'-"". P5 '\.Vé_'?‘"' P5 {'G".""' (._é_:“"'
Ci:{B} Ch:{B,P1,P2} cL:{B,P3} cl:(B,P3"} CL:{B,P4,P5} | CL:{B P4,P5'}
ci:(B,P1,P2} ct:{B,P3} ct:{B,P3"} Ci:{B,P4,P5} | CL: (B P4,P5} CE:{B,P4}
(a) S1: (b) S2: (c) S3: (d) S4: (e) S5: (f) se6:
Add Merge Shrink Split Update Remove
s o |
P14\ Merge i P4—‘> P4—— P4
Shrink |
> P3— P3’<ﬁt ! i
Update
P27 | | P5—>‘ P5'—>‘ Remove
Add | \ \ ‘ ‘
i i i
S1 | s2 | S3 | s4 . S5 . S6

(g) Patterns and their changes over time.

Fig. 1 Toy example showcasing an evolving graph over six states (S1-S6), as summarized
by background information B and patterns P1-P5’. (a-f) In each state s the initial and final
summary are represented by CI and CF, respectively; (g) Patterns P1-P5’ and corresponding
add/merge/shrink/split/update/remove actions can be used to summarize the six consecutive
states of the dynamic graph as depicted in a-f.

features of the proposed framework, key observations, limitations and future scope
are discussed in Section 8, after which we conclude in Section 9.

2 Related Work

We divide the relevant literature into the following categories: static graph mining;
static graph summarization; dynamic graph mining; and dynamic graph summa-
rization. The dynamic graph summarization category is most closely related to
our work; we discuss the other categories for completeness.

Static Graph Mining. Dense subgraph mining is a well-researched prob-
lem. The terms cliques, quasi-cliques (Abello et al., 2002; Matsuda et al., 1999),
k-cores (Seidman, 1983), k-plex (Seidman and Foster, 1978), kD-cliques (Luce,
1950) and k-club (Mokken, 1979) in static graphs have been systematically de-
fined and explored in the literature. Recent work on identifying quasi-cliques in-
cludes Tsourakakis et al. (2013); Veremyev et al. (2016), while Wu and Hao (2015)
summarize all methods for solving the maximum clique problem. Although these
measures to identify graph structures are objective, van Leeuwen et al. (2016) ar-
gued that the interestingness of each graph structure or pattern is subject to prior
information in most applications. On similar lines, Bendimerad et al. (2020) de-
fined subjectively interesting attributed subgraphs. In line with ideas given by van

Online Summarization of Dynamic Graphs using Subjective Interestingness 5

Leeuwen et al. (2016) and Bendimerad et al. (2020), we also consider the analyst’s
prior beliefs.

Another popular sub-category of static graph mining is clustering or parti-
tioning of the graph. Most of those methods focus on discovering splits, cuts, or
partitions in a graph to identify different regions or communities of interest us-
ing spectral partitioning (Alpert et al., 1999), min-max cut (Ding et al., 2001),
minimum cut trees (Flake et al., 2004), betweenness measures (Newman and Gir-
van, 2004), or modularity maximization (Newman, 2006). These methods cover
the graph as a whole, while pattern mining in graph data restricts the knowledge
discovery to some areas of interest.

Static Graph Summarization. The idea of static graph summarization is
to compress a graph (Navlakha et al., 2008; Koutra et al., 2014) or aggregate
nodes/edges in a graph (LeFevre and Terzi, 2010; Toivonen et al., 2011; Goebl
et al., 2016). It is found to improve query efficiency (LeFevre and Terzi, 2010),
speed up clustering algorithms (Toivonen et al., 2011), effectively compress a graph
dataset (Navlakha et al., 2008), and provide better visualization (Koutra et al.,
2014) of a graph dataset. Koutra et al. (2014) describe a graph by identifying
structures using a predefined vocabulary of graph structures such as stars, full
& near cliques, full & near bipartite cores, and chains, which minimizes the total
encoded length of the graph along with the model (based on the minimum descrip-
tion length principle). Another popular objective of static graph summarization
is to find influential dynamics in a network through patterns (Goebl et al., 2016).
These patterns provide a high-level description of a graph and are considered rel-
evant and informative in the case of real datasets such as social networks, where
information propagation is an essential characteristic of the data. Cook and Holder
(1994) subjectively summarize a graph by providing a hierarchical description of
structural regularities guided by the background knowledge in terms of rules, in-
cluding compactness, connectivity, coverage and other types of domain-dependent
rules. Similar to our proposed approach, the authors also combine the concept
of minimum description length with background knowledge. However, we model
background knowledge using constraints and the maximum entropy principle.

Dynamic Graph Mining. This category covers methods that identify tem-
poral graph patterns in a dynamic network. Rozenshtein et al. (2017) study in-
teraction networks to find dense and temporally compact patterns. The authors
introduce the k-Densest episode identification problem on temporal graphs (Rozen-
shtein et al., 2018), where an episode is defined as a pair of a time interval and
a subgraph. Galimberti et al. (2018) propose the idea of maximal span-cores and
span-cores decomposition of temporal networks.

Dynamic Graph Summarization. This category is different from dynamic
graph mining: graph summarization methods identify structures and evolution that
provide a succinct description of a network, while graph mining methods identify
all possible patterns in the network. As our proposed method fits this category,
Table 1 shows an overview of both existing methods and ours; we will elaborate
on this comparison in the last paragraph of this section.

GraphScope (Sun et al., 2007) was one of the very first methods that focused
on summarizing temporal graphs. It partitions the graph into bipartite cores and
cliques. Simultaneously, by detecting the change in encoding cost of graph segment
upon presentation of a new graph with the evolution in the state, segments are
identified.

6 Sarang Kapoor, Dhish Kumar Saxena and Matthijs van Leeuwen

Com? (Araujo et al., 2014) identifies temporal edge-labelled communities in a
graph and uses the minimum description length (MDL) principle with Canonical
Polyadic (CP) or PARAFAC decomposition. TimeCrunch (Shah et al., 2015) also
uses the MDL principle to summarize a temporal graph. The authors identify graph
structures, using the vocabulary of graph structures given by Koutra et al. (2014),
along with their corresponding temporal presence in terms of one-shot, periodic,
flickering, and ranged. Adhikari et al. (2017) summarize a dynamic network by
aggregating nodes into supernodes and time pairs into ‘super time’. This method
creates a flattened graph (static) after aggregation. Each of these methods concerns
an instance of MDL-based dynamic graph compression (either lossy or lossless),
but none of them directly summarizes how a dynamic graph changes and evolves.

Various methods in the literature have directly or indirectly addressed the
problem of summarizing the evolution of a dynamic graph. You et al. (2009) cap-
tures repeated addition and removal of subgraphs between two consecutive graph
snapshots in a dynamic graph. Scharwéchter et al. (2016) proposed to find fre-
quent structural changes, such as triadic closure and homophilic rewiring, in the
form of evolution rules. Ahmed and Karypis (2015) summarize graph evolution
by capturing co-evolving relational motifs, which occur when all or a majority
of the occurrences of a relational pattern—or motif—evolve similarly over time.
Robardet (2009) proposed to capture the evolution of isolated pseudo-cliques over
time by means of a sequence of five temporal events, including formation, dissolu-
tion, growth, diminution and stability.

Similarly, Ahmed and Karypis (2012) proposed to epitomize an evolving graph
by identifying Evolving Induced Relational States (EIRS). The authors defined
EIRS as a sequence of Induced Relational States (IRS), which are a set of vertices
that remain connected by similar edges having the same direction and label for
several consecutive snapshots (based on a threshold). In EIRS, the time interval of
each IRS cannot overlap with other IRS and has several or at least a certain number
of common vertices. Lin et al. (2011) focus on discovering evolving communities
by analyzing the dynamic interactions between vertices by representing the multi-
dimensional and multi-relational characteristics as a relational hypergraph called a
‘metagraph’. Another recent method based on TimeCrunch (Shah et al., 2015) that
aims to capture the evolution of graph structures is given in the preliminary work
by Saran and Vreeken (2019). They capture evolving graph patterns by capturing
dynamic events such as growth, split, merge, and change in structure type (e.g.,
from clique to star) of a pattern. Based on their characteristics, these methods can
be referred to as methods for discovering evolving graph patterns.

All methods mentioned in this category thus far are defined for a ‘fixed’ dy-
namic graph, i.e., over a fixed time interval, and not for a ‘streaming’ dynamic
graph that is generated on-the-fly and should also be analysed on-the-fly, where
the summary should change upon the presentation of a new snapshot of a graph.
In other words, these methods do not support online summarization. Recent meth-
ods for online dynamic graph summarization, discussed next, include Tang et al.
(2016); Khan and Aggarwal (2016); Qu et al. (2016); Tsalouchidou et al. (2020).

Tang et al. (2016) and Khan and Aggarwal (2016) generate a graphical sketch
of a dynamic graph, aggregating vertices and edge weights, which is updated af-
ter each snapshot of a graph sequence. These graphical sketches are useful to
improve the efficiency of graph-based queries. Qu et al. (2016) summarize a dif-
fusion network, i.e., a dynamic graph where information propagates with time,

Online Summarization of Dynamic Graphs using Subjective Interestingness

‘dIjemO)NE AJIIRSSOD9U J0OU ST YOTYM

‘qdesd orwreudp uoard a1) jo joysdeus d13R)S [YOoBO Ul POJRIdUas S9INJONI)s 9)BPIPURD JO 9ZIS 91} U0 juspuadap sI Arewrwins oy} jo 9zIs oY, ,

odeys ose ue surolyed
/ / / / Aue jo sydeisqus \amﬁcw ﬂmmﬁw\mxwz SUIA[OAS SAT)RULIOJUT DS5d toded st L
asuep ur sesury)) : : :
X X X 2 SI9)SN[O-OIOTW SSU(] sopou jo suorjryred-y YI0MIOU POsULpuo)) WHAS (0z0g) ‘Te 10 nopiyonores],
Ssou3UI}SaIaUl Paseq sopeosed jJo syderdqns .
X 4 X / o013 Surpealds snipeyoad zg adoogoad wsﬁwmz@pﬁ Jo 198 NSO (9102) 'Te 30 1D
wreaI)s
— X X 2 yoreys (¢ sepou jo Surddew-ysey qdes pesuspuon x1eNS (910g) TemIeSSy pue ueyy]
d so8pe wrea)s .
o X X / IS 4ALLD /sepou jo uorye89133y ydei8 pesuspuo)) INO.L (9102) T2 30 Suey,
suret ‘senbripd 9ouesard [erodue) S
«X /S X X ‘soqnyrediq ‘srelg TAIN Yy susojyed SUTAJOAT] OsUBIN (6107) UsMeaIA pue ueIeg
X , X , SOIIUNIMIO) UOoIjezLIo)oe] ydeide)o[\ SOIHTUNUITIOD JUSIIOUWIH orJeIdN (1102) TR %0 UIg
X Y X X Syont [ruone! 3oddns SUOIIN[0Ad-00 juenbarf puwNyg) (¢T10g) sidArey] pue powyy
3u1A[0AR-0)) WNWIUTW PaUuyep Jos() : : :
S9JR1S 9JEIS [RUOIIR[OI PIONPUL S9IRIS [RUOIJR[DL 9[(RIS
X 4 X X [eUOIYR[OI POONPU] W:_Zo\,_w ﬁwgdxwz Jo _msemm mo_usﬂ:’m Sl (210g) siddresy pue pourgy
Surrimar orfiydowoy y10ddns eseq jusas .
X / X X ‘0INSO[D DIPRIL], pue peseq Surppoquig] SO[ILL UOTINOAT HNINOAH (9103) T 90 IopyoRMIRYDS
X X X X sydeadqus so3ueyDd [RINIONIIG son1 Surjrimar ydern) — (6002) T8 1 nox
passaxduio)) o
X X X X sared ouiry pue aanseawr uoryegordse yIomjou SSUSPUODION (L102) T 10 1eypy
apou pajese13sy Ired awi) pur 9pON paus)jR pasuspuo)) o
surey ‘senbripd oouesald [erodure) .
XX X X ‘sogryrediq ‘Serg TAN m swsoyyey PUMMOPULL (8102) ‘T® 1° yeys
sdnoi3 Aury uo131soduodsp I0Sua) SOIITUNUIUIOD R 0
Va X X X ‘soryrediq ‘srelg s TAIN A%wmogv pareqe] 98pa ZNOD Aﬁﬂomv e 3o olnery
¢ syuowdes)
, X X , sonbrp ‘sojriredig TAW ydes erodwa], adoogydery (L00g) e 1o ung
aanjonajs/odAy UOLI9IID adXy
Sv. dd SI SO ﬁgouam\nﬁ uoI1309[9g Arewwing wWyLIosry Teded

'9ZIGQ ATRTIUINS JO UOI09[9S DIRWOINY—S VY (SUIdjed SUIA[OA—JH ‘UOIJeZIIRWNG [eJUSTIIOU[—C] {UOI}eZLI
-ewrwung aul[uO—§Q :sioddns porjour & I9YI9YM MOYS SUWN[0D jsourjySLl Inoj ay [, ‘spoyrown uorjezirewrwns yders sorwreudp jo uostredwo)) T 9[qeq,

8 Sarang Kapoor, Dhish Kumar Saxena and Matthijs van Leeuwen

by discovering spreading trees (n-ary) as cascades, which grows with a change in
state. Recently, Tsalouchidou et al. (2020) proposed the Scalable Dynamic Graph
summarization Method (SDGM) to generate an online summary by extending
the static graph summarization approach of LeFevre and Terzi (2010). Although
these methods provide online summarization, they do not summarize informative
state-to-state relative changes in a dynamic graph. That is, they do not provide
incremental summaries, where each relative change in the structure of the graph
is summarized and communicated to the analyst step by step.

To bridge this gap in the literature, we consider the problem of discovering
informative changes in a streaming dynamic graph in an incremental manner. As
we are interested in finding all informative changes, we require our method to
automatically determine the number of returned patterns. To this end we propose
to identify subgraphs that maximally deviate from the current knowledge of the
analyst. For this we build on the notion of subjective interestingness proposed by
De Bie (2011). To the best of our knowledge, we are the first to consider the prob-
lem of subjective, incremental, online graph summarization. This is corroborated
by the qualitative comparison in Table 1, which shows the relevant characteristics
for all dynamic graph summarization methods discussed in this section.

Since we propose to summarize a dynamic graph by means of dense patterns,
we will adapt TimeCrunch (Shah et al., 2015) and SDGM (Tsalouchidou et al.,
2020) to establish two baseline methods for empirical comparison in Section 6.

3 Preliminaries

This section defines the notation adopted in this paper, and briefly describes the
two most closely related works on which we build in this paper. These are 1) the
framework for FORmalizing Subjective Interestingness in Exploratory Data min-
ing (FORSIED) introduced by De Bie (2011), and instantiated for different types
of data and patterns; and 2) the work on Subjective interestingness of SubGraph
patterns (SSG) in static graphs by van Leeuwen et al. (2016).

3.1 Data and Notation

A rectangular dataset is a matrix D € D> where the dimension of the dataset
is given by M x N and D is the domain of an individual cell. A (simple) graph
is denoted as G = (V, E), where V is a set of vertices and E is a set of edges
such that u,v € V for each edge (u,v) € E. Its adjacency matrix is a rectangular
dataset and hence, represented by D € D!VI*IV! where D = {0,1}.

A dynamic (rectangular) dataset D7 changes with time, where 7" is the times-
pan of the dataset. This time interval can be segmented into several consecutive
intervals, where each interval ¢t = (tb7tf) C T represent a state s, such that ¢° is
the begin time and t/ is the finish time. For any two consecutive states, s and
s+ 1, time t! is equal to time tZJrl. Thus, a sequence of snapshots Dy,...,Dg is
observed, indexed by state s € {1,...,S}, where S is the total number of states.
Note that, in a sequence of snapshots, each Dy is a static rectangular dataset, such
that D, € DM>*N | We refer to such a sequence of snapshots as sequential data.

Online Summarization of Dynamic Graphs using Subjective Interestingness 9

A dynamic graph, denoted Gp = (V, Er), is a graph in which each edge is
present for a given period within time interval T, i.e., E7 is the set of edges that
occur in time interval T. More specifically, each e = (u, v, t°, tf) € Er defines an
edge u,v € V that appears at start time ¢t” and continues to exist until it disappears
at finish time ¢/. Again, the time interval T’ can be segmented into several intervals,
as seen earlier for dynamic datasets. This assumption implies that each ¢t C T
defines a static state s of the dynamic graph, that is essentially a (simple) graph:
each edge either exists or not. We denote the dynamic graph projected to its graph
corresponding to a fixed time ¢ by G, and its corresponding adjacency matrix
by D, € DIVIXIVI such that D = {0,1}. Hence, a dynamic graph, Gr can be
represented as a sequential dataset D, with a sequence of static graph snapshots
G1,...,Gg and a corresponding sequence of adjacency matrices D1,...,Dg.

Notably, even when time is not discrete, one can easily discretize it by seg-
menting it into equal-length intervals (e.g., seconds, minutes, ...). As we will see,
the length of these intervals determines the granularity at which the approach will
identify changes in the data. For instance, in the airline case, it is implausible that
(relevant) changes will occur within seconds or even minutes, hence, it may be
reasonable to segment time in hours.

3.2 Subjectively Interesting Patterns in Static Graphs

Informally, the FORSIED framework (De Bie, 2011) defines subjective interest-
ingness of a pattern as the information it provides with regard to the analyst’s
expectations (or prior knowledge), normalized by its complexity. Given a dataset
D, the analyst’s background distribution P*, is the distribution that maximizes
entropy, is given by

P* = argmax — P(D)log(P(D)), 1
argma DZE;D()og(()) (1)

st. B [fi(D)] = D%P(D) fi(D) = ¢, Vi, (2)
> PD)=1. (3)
DeD

The set of constraints enforced in Equation 2 is presented in a generalized
form, where each constraint B; € B is a pair consisting of a function f; over D—
as properties of the data—and a corresponding constant ¢;, i.e., B; = (fi,¢i). The
set of constraints B represents the analyst’s prior knowledge or expectations on
the data. The exact type(s) of constraints and their interpretation depends on the
type and nature of the dataset D.

Next, the interestingness of a pattern 6 is defined as the ratio of the pat-
tern’s self-information (denoted SZ) to its description length (denoted DL). Self-
information is the negative log-probability that the pattern is present in the
data, i.e., —log(P(f € D)), while description length is the number of bits required
to describe or communicate the pattern to the analyst.

10 Sarang Kapoor, Dhish Kumar Saxena and Matthijs van Leeuwen

Instantiating these generic concepts for dense subgraph patterns in static
graphs, van Leeuwen et al. (2016) defined interestingness I of a static graph pat-
tern, @ = (W, kw), denoting a vertex set W having kv edges, as'

_ST(Wikw)l ™KL (R llow)
LW kw)l = 57w kvv&vf)] W tog (52 +1V] -1og (1) (4)

where ny is the number of possible edges in subgraph W, ¢ is a hyperparameter
representing the ‘expected’ probability of a random node to be present in W, and
pw is the probability of the subgraph occurring given background distribution P*.
The latter probability is computed as pw = ﬁ Zu,vewpu,v, where py,» is the
probability that an edge between vertices u and v exists as given by P*.

Iterative learning. The framework above can be motivated by the observation
that compression equates learning (Grilnwald, 2007): in order to learn as much as
possible about the data, the implicit goal of the analyst is to (internally) repre-
sent the data using as few bits as possible. This observation implies minimizing
—log P*(D), i.e., the length of the data encoded by the background distribu-
tion. This can be accomplished by changing the analyst’s knowledge on D. Here,
change in the analyst’s knowledge on D implies that a new set of constraints
C corresponding to each discovered pattern must be constructed, which is used
to update the background distribution P*. Specifically, when a graph pattern is
discovered, a constraint is added to ensure that the updated expectations of the
analyst conform with the actual number of edges. For instance, when a graph
pattern (W, ky) is presented to the analyst, a new constraint Cw = (fw, kw) is
added to C, where fy is a function over W vertices which counts the number of
edges, i.e., fw(D) =3, ,cwu<y Plu,v], and kw is the actual number of edges in
the vertex-induced subgraph of W vertices. Notably, the solution to the following
problem provides the updated background distribution (van Leeuwen et al., 2016):

e arg}r)ninz P(D)log (;((DD))) 7 (5)
D
st. > P(D)fw(D) > kw, (6)
D
> PD)=1. (7)
D

Hence, the analyst can learn everything about the data by iteratively discov-
ering the most interesting pattern and updating the background distribution after
each iteration.

4 Proposed Approach
In this section, we introduce our novel framework for subjective interestingness for

sequential data, which extends the FORSIED framework but also incorporates cru-
cial changes. We introduce the problem of subjective summarization of sequential

1 All logarithms in this paper are to the base 2.

Online Summarization of Dynamic Graphs using Subjective Interestingness 11

data, and to solve this problem we propose the method of online summarization of
sequential data. Finally, we instantiate this generic problem for dynamic graphs.

4.1 Subjective Interestingness for Sequential Data

Given a sequential dataset D7, we consider the setting where an analyst is inter-
ested in learning informative patterns about the data as the snapshots unfold in
an online fashion. As with static data, the analyst may have prior beliefs about the
data already before the first snapshot—these are represented by a set of constraints
B.

When the snapshot corresponding to the first state is analyzed, we aim to find
a compact set of constraints, i.e., patterns, that—together with the prior beliefs—
minimize the negative log-probability of the data, given the implied background
distribution. To avoid finding either too many or too complex patterns, we draw
inspiration from the minimum description length principle (Griinwald, 2007) and
use a two-part code to balance the goodness of fit of the data with the complexity of
the constraint set. More precisely, we aim to find a new set of constraints C; with
corresponding background distribution P;" that minimizes — log Py (D1) + L(C1),
where L is a function that computes the encoded length for any given set of
constraints. It is of note that we require an additional set of constraints C; other
than the existing set of constraints B to achieve the optimal (feasible) solution of
the above problem. The set of constraints C; is used to ensure that the knowledge
mined by the discovered patterns is reflected in the background distribution Py.

For any consecutive snapshot, we now want to adapt what the analyst has
learned before; by only providing the analyst with information about changes that
have occurred in the data since the previous state, he requires minimal effort,
and we obtain a minimal summary. Given the previous, this implies that—for
each snapshot s after the first—we need to find a set of constraints Cs with corre-
sponding background distribution P; that minimizes — log Py (Ds)+ L(Cs|Cs—1),
where L is a function that computes the encoded length for any given set of con-
straints given another set of constraints; i.e., smaller changes require fewer bits.

With the given discussion, we formally introduce the following problem state-
ment.

Problem 1 (Subjective Summarization of Sequential Data) Given a se-
quential dataset D, i.e., sequence of snapshots D1,...,Dg, and prior beliefs B,

find:

— for D1i: a set of constraints C1 that minimizes —log Py (D1) + L(C1), where
Py is computed using constraints BUCq;

— for Dy, with s € {2,...,5}: a set of constraints Cs that minimizes
—log P; (Ds) + L(Cs|Cs—1), where PS is computed using constraints BUC.

4.2 Online Summarization of Sequential Data
Apart from the fact that optimally solving each iteration of Problem 1 would

require to consider a very large search space, i.e., that of all possible constraints
sets, we do not want to present unordered sets of constraints to the analyst: this

12 Sarang Kapoor, Dhish Kumar Saxena and Matthijs van Leeuwen

would very likely overwhelm the analyst and therefore cause confusion. Instead,
we prefer to present atomic changes to C to the analyst one by one, as is also done
in the framework for static data. We will therefore now derive an approach that
heuristically approximates Problem 1 by iteratively looking for the largest changes
and communicating those to the analyst immediately.

After each atomic change «, also called action, the set of constraints C is
updated to a new set C’, and hence the background distribution P* is updated
accordingly. « reduces the negative log-probability of the data by updating the
background distribution, and we define this reduction as Information Content,
zcC.

Definition 1 (Information Content) Given an action «, and constraint sets C
(original) and C’ (updated), we define the information content of c, denoted by
7IC, as the difference between the length of the data encoded by the background
distributions specified by constraint sets C and C':

IC(a) = IC(C'|C) = —log P&(D) — (—log P& (D)) ®)

= log P& (D) — log Pc(D),
where P% is the MaxEnt probability distribution given a set of constraints X (i.e.,
using Equations 1-3).

An action on C can be categorized as one of the following;:

1. Addition of a new constraint C, i.e., C' = CU {C},

Deletion of a constraint C , i.e., C' = C\ {C},

3. Update of an already present constraint C' € C, i.e., replacing C' with a con-
straint C’, and hence C' = C \ {C} U {C'}.

»o

Definition 2 (Description Length) The description length of an action «, de-
noted DL(a), is defined as the (minimum) number of bits required to encode the
changes in the set C when communicated to the analyst.

Remark 1 Given a set of constraints Cs_1, let A be an ordered set of actions
performed on Cs_1 to get an updated set Cs, then the encoded length L of Cs is
computed as:
L(Cs|Cs-1) = Y DL(a). (9)
acA

We now have two different quantities associated with each atomic change «,
i.e., ZC and DL. Maximizing ZC and minimizing DL leads to our overall goal
of minimizing — log Py (Ds) + L(Cs|Cs—1). Thus, we discount ZC with DL and
perform the action with maximal difference at each step. We call this difference
information gain and denote it by ZG.

Definition 3 (Information Gain) Let a be an action that transforms a given
set of constraints C into an updated set C’. Then, the information gain G on
performing a on C is given by

TG(a) = IC(a) — DL(a). (10)

Online Summarization of Dynamic Graphs using Subjective Interestingness 13

The process of online summarization begins with the initialization of back-
ground distribution Pg using the prior belief(s) B that an analyst may have. At
the start of state 1, no patterns have been discovered yet, i.e., C1 = (), which im-
plies Pg ¢, = Pg. Then patterns with maximum ZG (Equation 10) are discovered
iteratively and for each such pattern a corresponding constraint C' is added to C;
and hence the background distribution Pg ¢, is updated (using Equations 5-7).
Note that C; is initially an empty set, thus the only action that can be performed
on C; is the addition of a new pattern. The process continues until no feasible
action can be performed on set C;. Here, a feasible action is any action which
satisfies a user-provided criteria, for example, to be in agreement with the MDL
principle an action « it is recommended default that « is feasible if ZG(«) > 0.
The process then moves to the following state. For any state s (except state 1),
Cs is initialized to the final Cs—1 and P&_ to the final P& . This is followed by
iterative actions on Cs with maximal, ZG until no feasible action can be performed.

4.3 Online Summarization of Dynamic Graphs

The concept of subjective summarization of sequential data can be directly adapted
to dynamic graphs by segmenting such a graph into a sequence of static graph
snapshots (see Section 3.1). By making the data type more specific, however, we
can also instantiate the other components of the generic framework—e.g., actions,
prior beliefs, constraints, and description length—with more precise definitions. As
discussed earlier, a graph pattern, 6 = (W, kw) is a subgraph of W C V vertices
that is connected by kw edges. Thus, by definition a graph pattern is connected,
i.e., there exists a path from every vertex to every other vertex. Note that, since we
consider graph patterns, the definition of constraints follows the discussion in Sec-
tion 3.2. Following, we introduce the following problem statement as an instance
of Problem 1.

Problem 2 (Subjective Summarization of Dynamic Graphs) Given a dy-
namic graph Gr consisting of a sequence of snapshots G1,...,Ggs, with Ds the
corresponding adjacency matriz for a state s and prior beliefs B, solve Problem 1
such that each pattern in every set Cs is a connected subgraph pattern.

As discussed previously, optimally solving Problem 2 requires to consider a
very large number of possible constraint sets. Similarly, we heuristically address
Problem 2 by iteratively communicating atomic changes, or actions, having max-
imal ZG to the analyst. Based on the properties of a graph pattern and possible
structural changes, we now formalize six specific types of actions which we use to
communicate changes on graph data, as initially depicted in Figure 1.

The add action communicates a newly discovered subjectively dense subgraph
pattern. In Figure la, two patterns, P1 and P2, are identified and added in state
S1. A remove action deletes a pattern that no longer holds in the current state, i.e.,
when the pattern is no longer connected and/or its density decreases substantially.
An example is shown in Figure 1f, where a sparse pattern P5’ is removed in state
S6—removing a constraint is informative when it has a positive ZC.

The other actions are update, merge, shrink, and split, which all represent
modifications of constraint(s) already present in C. When the density of a pat-
tern corresponding to an existing constraint increases, this is communicated via

14 Sarang Kapoor, Dhish Kumar Saxena and Matthijs van Leeuwen

Table 2 Conditions that must be met to perform an action « on a constraint C present in
constraint set C, with initial pattern 6;, resultant pattern 6y and density function p (defined
as the ratio of the number of edges to the maximum possible number of edges in a graph).

Type is C € C? p(el) p(@,) is H,L- is 9f
of a : increases? decreases? connected? connected?
Add X — — — v
Remove v X v X —
Update v v X v v
Shrink v X v ? v
Split v X v X v
Merge 4 ? X 4 v
V': true, X: false, 7: may or may not be true, —: not applicable

update. Thus, a constraint C' = (fw, kw) € C is replaced by a similar but updated
constraint C’ = (fw, kjy). In Figure le, pattern P5 is updated to pattern P5’ in
state S5, when its density increases compared its density in state S4 (Figure 1d).
By applying a merge action, two previous patterns are merged to form one new
pattern. That is, two constraints C; = (fw,, kw;,),C; = (fw,,kw,) € C are re-
placed by a single new constraint C’ = (fw,uw,, kw,uw,), such that the resulting
pattern of vertices W; U W; is connected. An instance is presented in Figure 1b,
where two patterns, P1 and P2, are merged to create a new pattern P3 in S2.

Actions shrink and split either reduce an existing constraint or decompose
one into multiple constraints. A constraint is shrunk when the density of a pattern
decreases with the evolution of the graph (see Figure 1c¢, where pattern P3 shrinks
to form pattern P3’ in state S3). Similarly, a constraint can be decomposed into
multiple new constraints if the pattern corresponding to an original constraint
consists of two or more connected components (see Figure 1d, where pattern P3’
splits into two new patterns P4 and P5 in state S4). In shrink, the original
constraint C' = (fw,kw) € C is replaced by a new reduced constraint C =
(fw~, kw) such that W’ C W. In split, on the other hand, a constraint C =
(fw,kw) € C is replaced by M new constraints, C1 = (fw,,kw,),...,Cnm =
(fws kw,,), such that Wy, ..., Wiy C W and W; N W; = 0,Vi,j e {1,...,M}.

The different conditions that must be satisfied for each of the six types of
actions to be applicable are summarized in Table 2.

Next, the formulation of information content ZC and description length DL
of each action type is summarized in Table 3. We extend the abstract definition
of description length given in the previous section (Definition 2). The description
length of an action is the summation of two parts, the first of which encodes
the type of action, represented by type(«), and the second of which encodes the
details, represented by details(a). For all quantities where the upper limit is not
known, we use the universal integer code (Rissanen, 1983), which is given by
Ly(n) = log(2.865064) + log(n) + loglog(n) ... and sums over all positive terms.
If the upper limit is known then we use the uniform code (Griinwald, 2007), given
by log(n). Note that all logarithms are to base two.

In the description length of «, to describe the type of action we use the uniform
code over all possible action types as there is no priority or bias towards any
action. Thus, DL(type(e)) = T4 = log(l), as we require —log } bits. Here, | = 6
as we have defined six action types above. The computation of DL(details(x)) for

Online Summarization of Dynamic Graphs using Subjective Interestingness 15

Table 3 Shown are the formulation of Information Content (ZC) and Description Length
(DL) for each defined atomic change, a.

o Ic DL
Ada log P& (D) — log P& (D) Tat+Tc+Tp
Remove log PC*:\C(D) — log P& (D) Ta+Ts
Update log P(*j\cuc, (D) — log P& (D) Tat+To+Te
Shrink log Pé\cuc’ (D) —log P&(D) Ta+To+Te+Ta+Te
Merge log Pé\{ci,cj}uc' (D) —log P& (D) Ta+2X T+ Te

split log P&\ oo,y (D) — log P&(D) Tat+To+Tr+Tg+Tr+Ts

Ta =log(l), Ty =10g(|C|), Te =Ly (nw —kw + 1), Tor = Ly(nyr — kyr + 1),
Ta=Ln(|?]), Te =log(|W]) + log(|W] — 1) - - - + log(|W| — || + 1), Ty = log(M),
Tg=Ln(IWi]) + -+ Lu(IWnl), Tr =log(IW]) + log(IW] = 1) + -+ + log(IW] — = + 1)
where z = |W1 Uu---uJ VV}\/I‘7 T:= LN(”WI — le + 1) 4+ -+ LN(nWI\/I — kW}\l + 1),

Tp = |Wllog(q) + (IV| — [W])log (1 — q)

each action type is shown in Table 3. That is, details(add) is the summation of
the number of bits required to describe the set of vertices (T, = DL[(W, kw)],
see Equation 4, and the number of edges in the corresponding vertex-induced
subgraph. Instead of describing the number of edges in a subgraph, we describe
the number of edges short in a subgraph when compared to a clique of same number
of vertices. That is, for a subgraph having W vertices, nyy is the maximum number
of edges possible between W vertices, and ky is the number of edges, then we
describe the difference between ny and kyw, given by T .. Thus, a dense subgraph
with high number of edges would have smaller description length, which favours
discovery of dense subgraph patterns. Note that, the hyperparameter ‘g’ in 7 can
be used to influence the size of pattern (see Section 3.2).

In remove, update, shrink, and split, the index of the constraint to be re-
moved is communicated in 7T bits. Similarly, in case of merge the index of two
constraints are communicated in 2 x T} bits. Since we only consider the merge
of two constraints at a time, the term Ly(]2|) is omitted. In addition, for all the
actions except remove the information about the edges is communicated in T o
bits. In case of shrink, terms 74 and 7. indicate the number of bits required
to describes the number of vertices removed from the original pattern and the
removed vertices, respectively. In split, the number of resulting constraints is
described in 7 ¢ bits, each constraint in 74 bits, vertices in each constraint in 7,
bits, and information about edges in each component using 7T; bits.

Lemma 1 For an action «, which updates a set of constraints C to C’, ZC(a) as
defined in Definition 1 is equal to

IC(a) = log P& (R) — log P&(R), (11)

where R is a submatriz of D given by R = D[W1,..., Was; Wh, ..., W], such
that W is the set of M wvertices covered by the affected constraint(s)?, Ca.

2 The affected constraints C,, are those constraints (both original and updated) that are
affected by action a. That is, if a transforms C to C’ the C,, is defined to be all constraints
in either C or C’ that are not in both C and C’

16 Sarang Kapoor, Dhish Kumar Saxena and Matthijs van Leeuwen

Proof The proof is straightforward, however, for completeness we provide the fol-
lowing details. In Equation 8, log Px (D) = 3, <y log Px(Di;) is the sum over
all pairs of vertices. These pairs can be categorized into three groups, which are
1) both vertices lie in W, 2) neither of the vertices lie in W, and 3) either (but
not both) of the vertices lie in W. It is only in the first case that the prob-
ability is updated on performing the action «, while the rest of the probabil-
ity terms remains unchanged and hence, these terms cancel out each other, i.e.,
log P&/ (Dij) = log P&(Dyj). Thus, the result follows. O

By virtue of Lemma 1, we come up with the following result.

Theorem 1 The complezity of computing information content ZC of an action o
is O(|W|?), where W is the set of vertices included in Cl.

Proof The proof follows Equation 11 which is sum over all pair of vertices, (4,) :
i,j € W. Hence, this requires a complexity of O(|W|?). O

As discussed above, we solve Problem 2 by iteratively performing that action
(of one of the six types defined above) with maximal ZG. Thus, we introduce
the problem of online summarization of dynamic graphs (Problem 3). Hence, we
heuristically unfold Problem 2 by iteratively solving Problem 3 at each step.

Problem 3 (Online Summarization of Dynamic Graphs) Given the cur-
rent state s, graph snapshot G, corresponding adjacency matrix D, and current
constraint set Cs, perform that action ‘a’ from the set of all possible actions having
maximal information gain ZG, such that the pattern(s) obtained after performing
‘a’ are connected subgraph(s).

4.4 Additional Details

Prior Beliefs. We consider two different types of prior beliefs to constitute the
set B, which are direct adaptations of the beliefs proposed by van Leeuwen et al.
(2016), as follows:

1. Belief-c: In this case, we model the analyst’s knowledge about the total number
of edges in the initial snapshot of the data. In other words, the analyst has
prior knowledge about the relative edge density of the graph dataset. Solving
Equations 1-3, De Bie (2011) showed that P* turns out to be product of in-
dependent Bernoulli distributions for each random variable a.,, and is given
by

exp((2-) - au,v) '

P(D) = H 1+exp(2-A)

u<v

(12)

This distribution is best represented as a matrix P* € [0, 1]|V|X|V‘ with row
and column indices indicating the vertices, such that py,, = % = p(Go)
suggests the probability of a,,, =1, i.e., an edge between vertex u and v.

2. Belief-i: Similarly, here, the user possesses a belief about the individual degree

of each vertex in a snapshot of the data. The maximum entropy distribution

Online Summarization of Dynamic Graphs using Subjective Interestingness 17

turns out to be a similar product of independent Bernoulli distributions, given
as

. erp((Au + Av) - Qu,v)
P (D) = a 13
(D) ul;[v L+ copOo £ 00) (13)
where py,» = % is the probability of random variable a,,, = 1.

Updating the background distribution. When a pattern 8 = (W, ky) is
discovered (through action add), a constraint C' = (fw,kw) is added to the set
C, and P* is updated using Equations 5-7 (van Leeuwen et al., 2016), where the
updated P* is given as

PYD) = [v ™" (1 =puo) ", (14)

u<v

where

IT+ezpNu+Av+Aw)
exp(Au+Av)
1+exp(Ay+Ay)

(15)

) exp(Au+Ay+Aw) ifu,v €W,
pu,v = .
otherwise .

Thus, for all pairs (u,v) : u,v € W a unique Lagrangian multiplier, Ay is
introduced (using the bisection method) upon updating the background distribu-
tion. Similarly, if multiple constraints are present in C, then p;,v is computed as

expPut A+ ceciuwew Aw)
1+exp(AutXAo+2ceciuvew AW)
multipliers and compute the probability whenever required.

If a remove action is performed then the corresponding Lagrangian multiplier

is removed from the list to update the background distribution. Similarly, for all
other actions, first the corresponding Lagrangian multiplier(s) to the original con-
straint(s) are removed and then using Equations 5-7, new Lagrangian multiplier(s)
are computed. Hence, this is an efficient way to update the background distribu-
tion.
Feasibility Constraint. In order to provide the user with a concise summary we
introduce a feasibility constraints to limit the number of actions performed in each
state. That is, we consider an action feasible if the information gain is positive,
i.e., ZG(a) > 0. Although, it may be altered as per user preference, this choice
is motivated by MDL principle and ensures that an action always provide more
information about the data than that it costs to describe the action.

. Hence, it is efficient to store only the Lagrangian

5 The DSSG Algorithm

In this section, we introduce an algorithm called DSSG, of which the step by
step procedure is outlined in Algorithm 1. DSSG is a heuristic approach to solve
Problem 2 that works in an iterative manner, solving Problem 3 in each step. The
overall procedure of DSSG can be summarized as follows.

DSSG starts with an initial graph snapshot Go, an initial set of constraints B
(as the analyst’s prior belief), and a set of constraint C (which is usually () ini-
tially). Given this, the maximum entropy distribution P is then computed (Line
2). For each state s (Line 3) actions are performed iteratively to solve Problem 3
(Lines 5-10). The process continues until no action can be performed (Line 14).

18 Sarang Kapoor, Dhish Kumar Saxena and Matthijs van Leeuwen

Algorithm 1 DSSG
1: procedure DSSG(Gr, C, B)

2 Compute Maximum Entropy Distribution for Go given B as P

3 for each G; € G do > here G'r is a sequence of static graphs (snapshots)
4 repeat

5: A <+ EVALUATEADD(Gs, P)

6: R <~ EVALUATEREMOVE(GS, P, C)

7 U < EvALUATEUPDATE(GSs, P, C)

8 S < EVALUATESHRINK(Gs, P, C)

9: M <« EVALUATEMERGE(Gs, P, C)
10: T + EVALUATESPLIT(Gs, P, C)
11: B <~ GETBESTACTION(A,R,U,S, M, T) > Returns action with max. ZG
12: if B # () then
13: Update C and P using B and Communicate B to the analyst
14: until B # () > Move to next snapshot if nothing is to be learned

Each performed action consists of an update of the background knowledge (up-
dating P and C) followed by communication of the performed action B, to the
analyst (Line 12). An example can be seen in Figure 1, where in each state the
initial and final (represented by superscript I and F respectively) set of constraints
is represented by C (indexed by subscript s € [1,T]).

The feasibility constraint comes into effect while searching for the best action
to be performed in each step (Line 11). The overall best action with the maximal
value of ZG is selected and returned. If the best action violates the feasibility
constraint, then null is returned and the process continues with the next graph
snapshot.

The EVALUATEADD procedure is used to discover the best new subgraph pat-
tern with maximum ZG, which is a complex problem. This can be realized by
the fact that the discovery of new pattern requires the evaluation of all possible
2IVI' candidate subgraphs. Hence, we use a hill climber based search algorithm
(SEARCHPATTERN, see Algorithm 2) based on the SSG algorithm (van Leeuwen
et al., 2016), which is proposed for finding a subjective interesting subgraph in a

Algorithm 2 Find the most interesting pattern for addition

1: procedure SEARCHPATTERN(Gs, P, H*, I*)
2t H<+ H* I+

3: for u € Neighbors(H,Gt) \ W do > try if adding a vertex increases I
4: W'+ WU {u}, I' < IG(add)

5: if I’ > I then

6: W W/ I+ I, H+ (W ky)

7: if I > I* then

8: return SEARCHPATTERN(Gs, P, H, I)

9: else

10: for v € W do > try if removing a vertex increase [
11: W'+ W\ {u}, I' + IG(add)

12: if I’ > I then

13: W W', I+ I, H+ (W ky)

14: if I > I* then

15: return SEARCHPATTERN(G, P, H, I)

16: else

17: return (H*, I*) > If nothing increases I* return the found graph pattern

Online Summarization of Dynamic Graphs using Subjective Interestingness

14 7

12 6

10 A 5

v 8 -’ w4

S 6 4 Vs

P

4 el 2

2 < 1
% 2 2 6 8 101212 % 4
ST ST

(a) Belief-‘c’ (b) Belief-1’

Fig. 2 Plots of ZC vs SZ of all connected subgraphs of a Barabdsi-Albert random graph of
20 vertices

static graph. This algorithm starts with a seed pattern H* and recursively adds
(Line 3-6) or removes (Line 10-13) vertices to find a pattern with a maximal value
of ZG. This search stops if neither a vertex can be added nor removed (Line 17).
To ensure the connectedness constraint, while adding vertices only vertices neigh-
boring to vertices present in the pattern are checked (Line 3). As this hill climber
is likely to suffer from convergence to local optima, we independently run the Al-
gorithm 2 for a list of seed patterns (van Leeuwen et al., 2016) and select the
single best pattern as search result. Further, note that the computational cost of
naively computing ZG(add) at each step of the hill climber would be prohibitive,
as it would require to compute a new Lagrangian multiplier to update the back-
ground distribution at each step. As this is the same problem as van Leeuwen et al.
(2016) faced, we also adapt the same solution. That is, information content ZC of
a pattern 6 = (W, kw), as defined in Equation 8, is approximated by

7C(add) ~ SZ(6) = nw - KL (%pr) . (16)

We empirically show that Equation 16 is an adequate approximation of Equa-
tion 8 in Figure 2. To obtain Figure 2, we created a random graph of 20 vertices
using the Barabési-Albert model and computed the values of SZ (Equation 16)
and ZC (Equation 8) of all possible connected subgraphs, considering the two types
of prior belief as discussed in Section 4.4. It is observed that for all candidate sub-
graphs (and for both types of prior belief) the value of SZ is always less than or
equal to ZC. Although they are not exactly equal, the correlation » = 0.9999 (in
Figure 2a) and r = 0.9948 (in Figure 2b) are high enough to suggest that ST
can be successfully used as proxy for ZC, as is also argued by van Leeuwen et al.
(2016). Moreover, computing SZ is clearly much faster than computing ZC, as it
does not require updating the background distribution at each step. Hence, this
allows to discover surprisingly densely connected graph patterns from snapshots
of the graph in an efficient way.

EVALUATEREMOVE and EVALUATEUPDATE are used to evaluate each constraint
in C to, either remove or update a constraint, respectively. In these procedures,
each constraint in C is independently evaluated by computing the corresponding

20 Sarang Kapoor, Dhish Kumar Saxena and Matthijs van Leeuwen

Algorithm 3 Find a candidate shrink pattern

1: procedure SHRINKPATTERN(H*, P, I*)
for u €¢ W do

W' W\ A{u}, I' < IG(a)

if I’ > I then

W W', I+ I H+ (W ky)

if I > I* then

return SHRINKPATTERN(H, P, I)
else

return (H*, I*)

ZG. To compute ZC (as in Table 3), we update the background distribution as-
suming that the action would take place. Of note, the update in the background
distribution is rolled back after evaluation of each constraint. Both of these method
return the respective constraint with maximal ZG.

Similarly, EVALUATEMERGE returns two constraints (in C) or patterns which,
when merged, result in a connected graph pattern with maximal ZG.

EVALUATESHRINK is used to evaluate each constraint in C for shrink and the
reduced constraint with maximal Z§ is returned. To shrink a pattern or constraint,
we use the procedure SHRINKPATTERN (Algorithm 3), which recursively removes
vertices (Line 2-7) until no increase in ZG is observed (Line 9).

EVALUATESPLIT is used find the constraint which produces maximal ZG upon
split. Note that, a new pattern that is the result of split may shrink in a next
iteration; hence we also evaluate a possible reduction of each resulting pattern
upon split using procedure SHRINKPATTERN. Thus, EVALUATESPLIT contains
two parts: 1) first the different connected components in the original pattern are
identified (each component acts as a new pattern or constraint), and 2) then each
new pattern is evaluated for shrink.

Complexity. In a single iteration of DSSG, six different procedures are exe-
cuted sequentially; hence, we discuss the complexity of each procedure. The EvAL-
UATEADD procedure runs the hill climber SEARCHPATTERN independently, k times
for k different seeds. In each iteration of this hill climber, the computation of ZG is
the most computationally expensive part, with time complexity of O(|W|?) (from
Theorem 1), where W is the set of vertices in a pattern. This hill climber is a di-
rect adaptation of SSG and van Leeuwen et al. (2016) showed that this complexity
can be reduced to O(|W]). Hence, if the number of neighbors in Algorithm 2 is
(let’s say) N, then each iteration takes O(N|W|). Thus, the worst-case complexity
of running SEARCHPATTERN becomes O(ZN|W|), assuming that the hill climber
runs for at most 7 iterations.

In the other procedures, to evaluate each constraint in C requires the compu-
tation of ZG, which takes O(|W|?) (from Theorem 1). Note that computing the
Lagrangian multiplier corresponding to a revised constraint in C requires to run
the bisection method, which has a complexity of O(n|W|?). In this, n is the number
of iterations required, computed as log <*, where ¢ is the given error or tolerance
and €g is the initial bracket size. Thus, the other procedures have a complexity of
O(n|W)?).

Given that the complexity of the overall algorithm strongly depends on the
actual number of iterations, which cannot be computed in advance, we will instead
mention empirical runtimes in the experiment section.

Online Summarization of Dynamic Graphs using Subjective Interestingness 21

Table 4 Datasets along with some of their properties. Type indicates if the dataset is a
Directed (D) or Undirected (U) graph, |V] is the total number of nodes in the graph, |Eg|
is the total number of unique edges without timestamp, |Er| is the total total number of
unique edges with timestamp, 7" is the total time period for which the edges in the graph are
considered, ¢ is the time period covered by each individual state, and |S| is the total number
of states considered for each dataset.

Dataset Type V] |Es| |ET| T t |S|
Hicu-ScnooL U 327 5818 20448 5 days 1 hour 41
WORKPLACE U 217 4274 11730 10 days 1 hour 91
MATHOVERFLOW U 24818 187978 231465 6.5 years 1 quarter 26
REUTERS U 7403 105343 159977 66 days 1 day 66
THEMOVIEDB U 8292 236691 249324 10 years 1 year 10
DBLP U 27400 83509 98 330 10 years 1 year 10
WEBCLICKS D 80306 90435 231055 22 days 1 day 22

6 Experiments and Results

In this section, we will demonstrate the efficacy of the proposed framework and
corresponding algorithm, DSSG, by means of quantitative (Section 6.3) and qual-
itative (Section 6.5) results on seven publicly available real-world datasets (Sec-
tion 6.1). We also compare the proposed method to baselines based on two recent
methods for dynamic graph summarization (Section 6.4).

6.1 Datasets

In this section, we will use the following seven publicly available datasets, also
summarized in Table 4.

HiGH-ScHOOL INTERACTION®: This dataset has a total timespan of 5 days. In
all 9 hours of interaction is available per day, except for the first day with 5 hours,
and the total timespan is segmented into 41 different states of 1 hour each.

WORKPLACE INTERACTION®: This is an interaction network of employees at
a workplace. It has a total timespan of 10 working days, where interactions for
9 hours are available for each day, except for the first day where 10 hours of
interactions are available. It is segmented into 91 different states of 1 hour each.
Although the interactions are instantaneous in nature, an edge exists for each
interaction which occurred in a state (snapshot).

MaTHOVERFLOW?: This network captures the communication between users
on the MathOverFlow website. A timestamped undirected edge exists between
two users if one user answers another user’s question, comments on another user’s
question, or comments on another user’s answer to any question. The dataset has
a total duration of 2560 days. Here we consider a total timeperiod of 6.5 years,
segmented into 26 states of 1 quarter (3 months) each. The lifespan of any edge is
considered to be three months, i.e., an edge disappears 3 months after the time it
appeared in the network.

3
4

source: http://www.sociopatterns.org/
source: https://snap.stanford.edu/data/sx-mathoverflow.html

22 Sarang Kapoor, Dhish Kumar Saxena and Matthijs van Leeuwen

REUTERS TERROR NETWORK®: This dataset contains words that are present
in each news article following the 9/11 terror attack. We build a network of words
(as vertices) with a link between them (undirected edge) wherever they appear
in the same article. The total time period considered is 66 days, with segments
(snapshots) of 1 day each. In each state, the snapshot of the network contains all
the words (and edges between them) if they appeared in any news article published
on that day.

THEMOVIEDB: A network of actors (vertices) is considered, with an edge cor-
responding to a co-acted movie. The data is fetched using the TheMovieDB APIS.
The time period of the network is from year 2009 to 2016, and is segmented into 8
states of 1 year each. All movies in the 8 year time period having actors with popu-
larity score more than 2 are included. Each snapshot contains edges corresponding
to movies released in the same year.

DBLP: This is a co-author network, created using the DBLP” data of all
publications in top-20 Machine Learning and Data Mining conferences® over a
period of 10 years. The dataset is segmented into 10 states of 1 year each, adding
an edge between two authors if they have co-authored at least one publication in
the given year.

WEBCLICKS: A network of click requests (directed edges) is created from re-
ferrer host to target host (nodes) for the time period between 1 November 2009
to 22 November 2009. To prune the data’, we only consider edges with more than
25 requests in a day. Also, the network is segmented into 22 states of 1 day each.
That is, the edge remains only for 1 day, given that at least 25 requests were made
from referrer host to target host.

6.2 Experimental Setup

The prior belief for each of the datasets, except for the THEMOVIEDB dataset,
used in this paper is type belief-c. For THEMOVIEDB type belief-i is used.

Since, we use an adaptation of the hill climber given by van Leeuwen et al.
(2016), we fix the following parameters as suggested by the same article.

1. The parameter ‘g’ used in computation of the description length of pattern
(see Table 3) is fixed at 0.01.
2. We use the ‘interestingness’ based ‘TopK’ seeding strategy with k = 10.

The experiments are executed on an Apple Macbook Pro 2018, with 2.3 GHz
Quad-Core Intel Core i5 processor and 8 GBs of RAM.
6.3 Quantitative Analysis

In this subsection, we demonstrate the performance of the proposed method on
the above mentioned datasets. We evaluate the results in terms of 1) the type

source: http://vlado.fmf.uni-lj.si/pub/networks/data/CRA /terror.htm

source: https://www.themoviedb.org/documentation/api

source: https://dblp.uni-trier.de/

source: https://scholar.google.co.in/citations?view_op=top_venues&hl=en&vq=eng
source: http://carl.cs.indiana.edu/data/websci2014/web-clicks-nov-2009.tgz

© 0w N O O«

Online Summarization of Dynamic Graphs using Subjective Interestingness 23

Table 5 Properties of the found set of patterns (or constraints) Cs in each state s. Minimum,
median, and maximum value of each property is shown among all states in each dataset, where
the number of constraints in each state is shown by |Cs|; total number of performed actions in
each state by | A|; difference in two sets of constraints (Cs—1 and Cs) in terms of the number
of edges added and removed covered by patterns in either set by {2¢; overall changes in the
dataset between two consecutive states (s — 1 and s) in terms of number of edges added and
removed by (2s; average of the average density of all the patterns in Cs by p; compression
ratio by CR; and coverage, i.e., the fraction of vertices of the dataset covered by all patterns
combined. Runtime (in seconds) is the time required to process all states of the dataset, i.e.,
to obtain a complete solution of Problem 2.

DataSet |Cs| |A| Nc s p CR Coverage ‘ Runtime
min 6 6 60 326 0.4104 0.47% 10.70%
HiGH-ScHOOL median 14 12 250 819 0.6247 8.01% 28.13% 307
mazr 22 16 755 1247 0.7600 25.01% 58.41%
min 1 1 5 35 0.5176 0.36% 2.16%
WORKPLACE median 5 5 50 193 0.7000 1.23% 3.23% 96

mazx 11 11 626 997 1.0000 36.44% 28.57%
min 1 1 4151 8223 0.0070 0.63% 2.59%

MATHOVERFLOW median 10 7 6147 16703 0.0179 4.38% 10.22% 74849
max 23 17 14138 24292 0.1226 46.20% 12.56%
min 5 1 177 322 0.0353 0.16% 2.20%

REUTERS median 18 11 796 3827 0.2630 5.44% 4.71% 79049
mazx 32 27 6550 13494 0.6693 19.50% 16.52%
min 2 9 3725 22145 0.0062 12.79% 6.07%

THEMOVIEDB median 27 45 6379 42586 0.3125 21.82% 10.93% 18908
max 118 118 15556 74499 0.9968 48.30% 17.62%
min 2 1 345 7959 0.6208 1.03% 2.19%

WEBCLICKS median 6 2 539 11759 0.6814 2.41% 3.58% 14576
mazx 7 3 3384 12751 0.7104 18.50% 4.24%
min 10 10 462 4125 0.6207 7.49% 0.49%

DBLP median 62 68 3599 16705 0.6814 9.28% 2.53% 72548
mazx 142 160 6604 29704 0.7104 11.51% 5.13%

of actions performed in each state, 2) the number of patterns (or constraints)
required to summarize each state, 3) the densities of the patterns found in each
state, 4) the ratio of the vertices covered by the patterns in the dataset in each
state, and 5) the compression ratio between the encoding cost of the data given the
initial background distribution and given the final background distribution in each
state. We also showcase the feasibility of the proposed approach by presenting the
time taken for online summarization of all states in each graph dataset. Table 5
presents the results and summarizes the set of found patterns for each dataset by
the proposed method.

Number of patterns required to summarize each state. We observe
the lowest median number of patterns, i.e., 5 for WORKPLACE and most, i.e., 62,
for DBLP. This is expected as WORKPLACE has the smallest number of vertices
and DBLP has the second most number of vertices among all considered datasets.
However, WEBCLICKS has the largest number of vertices but surprisingly very few
patterns are found to summarize each state ranging between 2 — 7. This is because
WEBCLICKS is sparsely dense with the number of unique edges |Es| almost equal
to number of vertices |V| (see Table 4). For THEMOVIEDB, a high number of
patterns are observed in the summary of each state as THEMOVIEDB is relatively
dense dataset.

24 Sarang Kapoor, Dhish Kumar Saxena and Matthijs van Leeuwen

N
o

Add E= Update Shrink =~
EZE Remove Merge LY —

o
o

[S]
o

o

Fraction (in %)
N w B
o o
S
i |
‘|

.
o

oL H B 1 m - el
High-School Workplace MathOverFlow Reuters TheMovieDB WebClicks DBLP
Datasets

Fig. 3 The fraction of each type of action used to summarize each dataset.

We also observe that the patterns found covers a high number of vertices despite
of performing only limited actions. The largest coverage of 58.41% is observed for
HicHScHOOL and smallest of 0.49% in DBLP. In case of WEBCLICKS, reasonable
coverage in the range of 2.19% — 4.24% is observed. Hence, we conclude that
depending upon the size and density of a dataset, our method adequately identifies
the number of patterns required summarize each state of a dynamic graph.

Number and type of actions performed. We observe that the number
of actions (|.A|) performed in each state is consistent with number of changes
taking place in the network upon evolution from one state to another (i.e., total
number of new edges added and old edges removed, shown by 2g). That is, when
s is smaller, a smaller value of |A| is observed, and vice versa. For example, in
REUTERS only 1 action is performed when changes in the network are small, i.e.,
a total of 322 edges are either added or removed, and 27 actions are performed
when the changes are much larger, i.e., 13494 edges either appeared or disappeared
from the network. The fraction of each type of action performed can be seen in
Figure 3. It is found that add and remove are the two most frequently performed
actions, whereas the other types of actions depend on the nature of evolution
of the network. It is seen that update is performed only for the HiGH-SCHOOL
network. For WEBCLICKS, no merge or split actions are observed. Hence, the
type of actions carried out are dependent on the topology of the network and the
nature of evolution, to which our proposed algorithm effectively adapts itself.

Quality of patterns. We assess the identified patterns through average den-
sity'® p and compression ratios CR'!. Minimizing the encoding cost of the data is
only one part of our objective, and we use it to signify the information contained
in the patterns: the higher the compression ratio, the more information about the
data is provided by the patterns. The maximum compression ratio is observed
for THEMOVIEDB, which is 48.30%, and the minimum of 0.16% is obtained for
REUTERS. This is accompanied by the observed high values for the average of
the average densities of all identified patterns, including the minima of 0.0062 and
0.0070 in case of THEMOVIEDB and MATHOVERFLOW respectively, which are also
higher than the average densities of snapshots of the data. Thus, our method finds
subjectively dense and informative patterns.

10 For a graph G = (V,E), p = %(directed) or = % (undirected)

1 CR is 1 minus the ratio of the encoding cost (number of bits, computed as — log, P(D)) of
the data given the initial background distribution and given the final background distribution.

Online Summarization of Dynamic Graphs using Subjective Interestingness 25

,_.
~

‘S 10 ﬁ ‘S 20
— | | | —
X i i i X
X 8 | | | ' ks

| | 4 15
s didd A AT ‘ £
o OhAs| g T | =7 i 5
s Jidhil £10
s Ny L o
o | HH T 5
o 2t j~ i s}
o “IHT | (]

‘Nms m © =] & S 0 ~ A moN @ & S
States States
(a) DBLP (b) THEMOVIEDB

Fig. 4 Codelength (blue solid line) vs average of the average densities of patterns in set Cg
(orange dashed dotted line) vs state s. The vertical dashed lines indicates the change of state
and the horizontal axis represent from left to right all iterations, where a series of actions is
performed for each consecutive state.

We also observe for THEMOVIEDB where a more sophisticated belief, i.e.,
belief-i is used. That is, the background distribution closely represents a snapshot
of the dataset, and with the change of state, any action would results in high
compression ratios, which is also observed in Table 5.

Quality of actions performed. We next investigate the sequential approach
taken in Problem 3. From the nature of the problem, it is expected that with each
performed action, the codelength of the data should decrease and the average of
average densities of identified set of patterns should increase. This is confirmed by
Figure 4, where the codelength is found to be always decreasing and the density is
mostly increasing for the DBLP and THEMOVIEDB networks. We also observe in
Table 5, that there is a correlation between changes captured by the actions (i.e,
2¢) and changes in the overall state (i.e., £25) compared to the previous state.
For THEMOVIEDB, we observed a relatively larger value of {2¢, i.e., 15556, when
(2g is also large, i.e., 74499; for WORKPLACE we observed smaller value of {2¢,
i.e., 5, when (2g is smaller, i.e., 35. Therefore, the actions capture the changes in
the graph state appropriately.

Runtime Analysis. Last, we discuss the (computation) time taken to run the
experiment for each dataset. This is comprised of various factors, including the
time required to compute the background distribution, executing the hill climber
with different number of seeds to discover patterns, creating a candidate list for
each type of atomic change to be performed, and updating the background distri-
bution. In Table 5, the factors visibly affecting runtime are the size and density of
a dataset, and the number of segments considered in a dataset. Overall, the max-
imum runtime of 79049 seconds, which is approximately 22 hours for REUTERS,
appears practical. However, this could be further reduced upon optimization and
parallelization of the proposed algorithm. Also note that all experiments have been
run on a standard laptop.

6.4 Comparison with baseline methods

In Section 2 (and specifically in Table 1) we have described in detail how DSSG
differs from existing methods for dynamic graph summarization, i.e., it solves a
(slightly yet crucially) different problem. Specifically, unlike other methods DSSG
summarizes a dynamic graph by discovering state-to-state relative changes in the

26 Sarang Kapoor, Dhish Kumar Saxena and Matthijs van Leeuwen

form of evolving patterns and incrementally updates the analyst’s knowledge af-
ter each graph snapshot. To empirically demonstrate that DSSG provides good
solutions to this problem, we here compare its results to those obtained by two
baseline methods adapted from TimeCrunch (TC) (Shah et al., 2015) and Scalable
Dynamic Graph summarization Method (SDGM) (Tsalouchidou et al., 2020).

Baseline Methods. Next we describe how we adapt TC and SDGM to match
our problem setting. For TC, at each state s we compute two summaries using
TC, for 1) graph sequence G1,...,Gs—1, and 2) graph sequence G1,...,Gs—1,Gs.
The difference between the two resulting summaries is the incremental information
communicated to the analyst using two action types, namely add, to communicate
patterns that appeared in state s, and remove, to communicate patterns present
in state s — 1 but not in s. These actions are encoded as with DSSG (see Table 3),
except that the number of action types is two. SDGM provides a summary after
each state, hence for SDGM we use the same two action types and encoding to
communicate the changes between each two consecutive summaries.

As neither TC nor SDGM considers prior knowledge, for consistency in com-
parison we start from the same initial background distribution as for DSSG. The
background distribution is updated after each action, exactly as in our approach
(Equations 5-7, 14). Whereas our approach automatically selects the number of
patterns needed to summarize the changes, TC and SDGM do not. For TC we set
the (maximum) number of actions'? to be the number of patterns found by DSSG
in each state. For SDGM'3, we choose the maximum number of patterns among
all states by DSSG as the number of supernodes in each dataset, as it identifies a
preset number of supernodes while producing a summary in each state. Note that
providing this information from DSSG is potentially favorable to TC and SDGM.

Evaluation criterion. The objective of our main problem, i.e., Problem 2,
is to minimize — log P& (Ds) + L(Cs|Cs—1) for each state s of a dynamic graph.
Hence, we assess the there methods using this function as a measure. For simplic-
ity, we denote the number of bits required to encode a graph snapshot D, given
background distribution P&, i.e., —log P& (Ds), by L(Ds), and the number of
bits required to encode all atomic changes, i.e., L(Cs|Cs—1), by DL. In the follow-
ing, we use superscripts I and F' to represent respectively the Initial and Final
values of a state. Apart from absolute values, we also investigate the difference
between these initial and final values, which is equivalent to the total ZG achieved
by performing all actions found for a state s, as given by

=0, as C£2C571

L'(D,) L7 (Dy)
A | —— P S
IG = | —log Pci(Ds) + L(Ci|CiLy) | — [—log Por (D) +L(C{|CIy)

= log Por (D) — log Per(Ds) — L(CY |CE_y) .
N———’

zc DL

12" As recommended in Shah et al. (2015), we fix the Jaccard similarity threshold to 0.5.

13 Tsalouchidou et al. (2020) suggests choosing a high number of microclusters compared to
the number of supernodes, therefore, the number of microclusters is chosen as 10 times the
required number of supernodes/clusters. The required window size is set to 2, to take into
consideration only the previous state while summarizing each state.

Online Summarization of Dynamic Graphs using Subjective Interestingness

27

—e— DSSG —— TC —=— SDGM
1.0
“a
Qo3
S
]
T 0.6
[
N
© 0.4 .
£
o 0.2
=
0.0
& o
'000 & (<\°$ \§é \&Q’ QQJ\’
g K & @ X
) S o' <& Q\°
B N ,§9 ,((‘e'
Q\
Datasets

(a) Normalized L!(Ds) (lower=better)

—e— DSSG —+— TC —=— SDGM
1.00{ . — N
H N °
R 075 M R
? Tl 1"
g 050 FRE % .
ot T
5 i
2 0.00 + 12 ¢ e
-0.25 - u
> SN
C 9 X Q¥ v
g & F& &
& & ob ¢ ©
NS N Q\’:)& ,((‘0
Datasets
c) Normalized ZC (higher=better
g
—e— DSSG —— TC —s— SDGM
1.0 N

0.5

0.0

-0.5

Normalized I¢
(am

~-1.0 a 1 .
N & N 2 K
& & L
9 & (2 9
DS ot < N
b Q\é{? /\‘(\0
Datasets

(e) Normalized ZG (higher=better)

—e— DSSG —— TC —=— SDGM
1.0
@
Bos
w
~
© 0.6
9]
N
T 0.4
E .
2 0.2 =
0.0 °
> o Q
'<\°° N (<\°$ o&‘ .\é)@ QQJ\’
& & & Q@ s
& &) >
RS Q\é& &
Datasets

(b) Normalized L (D;) (lower=better)

—e— DSSG —— TC —s— SDGM
1.0 + n N -
1
Q
Q 0.8 R
D06
N
E .
0.4 LY
goelll o
o
P4

o o
o N
H}—»
[X0
—T
(\J

i
HH
LN
HO [=

3 Qo SN
c‘}\o Q\’b (,(\0 0@ \'\\é) O‘b\/
& R RS
@Q S ,“){90 ,\‘(‘0
Q\
Datasets

(d) Normalized DL (lower=better)

—e— DSSG —+— TC —=— SDGM

-
o

Normalized LF(Ds) + DL
o o o o o
o N » [e)] (o]
-0 -
%y, | —— T

S & SRS o 3
6é\o Q\’b @{(\o QP@ Q Qq,\/
S $0(o' <& ©
b Q\’&é\ ,((‘z
Datasets

(f) Normalized L¥ (D) + DL (lower=better)

Fig. 5 Each subfigure shows the distribution of values over all states, for a component of the
evaluation criterion, for six datasets and all three methods. Each measure is normalized by
setting the maximum absolute value observed for a dataset by any of the methods to one.

28 Sarang Kapoor, Dhish Kumar Saxena and Matthijs van Leeuwen

Results. Starting with Figure 5f, depicting overall compression by means of
normalized L* (D)4 DL over all states, we observe that DSSG yields lower (=bet-
ter) values for four datasets; TC has better results for WORKPLACE and DBLP.
This shows that DSSG generally succeeds in finding better solutions to the overall
problem, with T'C often close and occasionally better. If we now turn our attention
to the results for ZG in Figure 5e, we observe that DSSG is the only method that
always finds actions having positive information gain. For WORKPLACE, where TC
seemed to perform better on a high level, TC finds patterns that provide nega-
tive information gain—which conflicts our problem statement, and therefore the
results are suboptimal from the perspective of our problem.

For DBLP, however, TC performs better than DSSG with regard to both
L¥(D;) + DL and ZG. We therefore investigate the individual components of ZG,
ie.,, LT(Ds), LT (D), ZC, and DL, in Figures 5a-5d respectively. In Figures 5a
and 5b, we see that the encoded sizes of the data at the start and end of each state
are (logically) very similar to each other, but they are also quite similar to those
in Figure 5f: the size of the data is a relatively large part of the total compressed
size. The (normalized) encoded sizes of the data obtained by DSSG are typically
smaller than those obtained by the other methods.

When we study the distributions of information content in Figure 5c¢, we ob-
serve that both DSSG and TC succeed in identifying patterns with high infor-
mation content. The high ZC values for TC come at the cost of higher values for
DL though: Figure 5d shows that the description lengths required to communi-
cate the patterns are larger for TC than for DSSG—also for DBLP. Given that
the same encoding is used for TC as for DSSG, and the number of patterns is
fixed for TC, this means that the patterns found by TC are larger and often—but
not always—Iess informative. (Also, note that DSSG is able to employ other ac-
tion types, enabling compact yet informative summaries.) SDGM clearly solves a
(very) different problem than DSSG, as it finds patterns with both low information
content and large description lengths.

In summary, we conclude that when we adapt TC and SDGM for the prob-
lem that we consider in this paper, they perform less well than DSSG. TC finds
summaries that are similarly informative yet more complex than those of DSSG.
SDGM, on the other hand, generally finds complex summaries that are far less
informative than those identified by the other methods. We would like to stress
that this should not come as a surprise though, and should certainly not disqualify
either TC or SDGM: they have been designed to solve other problems than DSSG.
The above results demonstrate that our problem and approach are indeed different
from those considered by TC and SDGM, corroborating our proposed approach.

6.5 Qualitative Analysis

In this subsection, we discuss how the summary created by our proposed approach
can be meaningful to a domain expert. Since we provide a summary of the changes
in a dataset, the effectiveness of the discovered patterns can be assessed by the

Online Summarization of Dynamic Graphs using Subjective Interestingness 29

® Pattern A
@ Pattern B

James H. Horne
Donna S. Haverkamp
Agma J: M. Traina Fan'Guo Ellen K2Hughes
L aN— Cae(ano Traina Jr. Gunhee Kim
Ashwin Sridharan und Soshad Sridhar Machiraju
Vawcors U ang. " Hanghang Tong enips v
B. Aditya Prakash ~ Koii Maruhashi
Duen Horng Chau LeiLi Keith Henderson

LemanAkoglu

Robson L. . Cordeiro

Charalampos E. Tsourakakis

Tina Eliassi-Rad

James Abello

Christos Faloutsos

Spiros Papadimitriou

(a) Y2010: Add ‘A’ & ‘B’

® Pattern C

Uepang Hanghang Tong
B. Aditya Prakash Keith Henderson
Duen Homg Chau Lei Li
Leman Akog

‘asushi Sakurai

Tina Eliassi-Rad

Christos Faloutsos

(c) Y2012: Shrink ‘C".

® Patten C @ Pattern H
® Pattern E
Amanda Gentzel

U. Kang Manuel Gomez Rodrguez
Tina Eliassi-Rad Hanghang Tong
B. AdiyaPrakash Lei Ll yyon,n 7y
Fei Wang xmran Xu
Christos Faloutsos Peng Cui _Shigiang Yar
- Leman Akoglu Mer\ Jian
Danai KQuirg, ,, eran Gatagher Efic P. Xing _yasus ‘S‘ngeute\ o
e Simnaman 1909 s Pariha P Talukdar Abhimany Kamar
Brian Murphy
Evanﬂelos E. Papalexakis Nicholas D. Sidiopoulos
Miguel Araujo .. Anaiithram Swami Stephan Giinnemann
Prithwish Basuy . Tobas koter UGN WU piong i Tom M. Mitchell
Tien-Cheu Kao Ching-Hao Mao
KuoCh Lee

Brendan Moeder

Duen Homg Chau

(e) Y2014: Split ‘D’ to ‘E’ & ‘F’; Add ‘G’

Merge ‘F’ & ‘G’ into ‘H’.

® Pattern C Robson L. F. Cordeiro
ma J. M. Traina
Ana Paula Appel Caetano Traina Jr.

Charalampos E. Tsourakakis Jure ERSkaTEe

U. Kan
Ting ElassiRad Hanghang Tong
. Aditya Prakash

B
) Duen Horng Chau Keith Henderson
Christos Faloutsos ~ Leman Akoglu

Spiros Papadimitriou

LeiLi

Yasushi Sakurai

(b) Y2011: Shrink ‘A’ & ‘B’; Merge ‘A’ & ‘B’
to ‘C.

@ Pattem C i Henry G. Goldberg
@ Pattern DRobert McColl 1homas G. Dietterich B. Adiya Prakash
Oguz Kaya Alex Memory
Jay Yoon Lee

ees David D. Jensen
Tina Eliassi-Rad Hanghang Tong
Ukang Lisa Friedland

Amanda Gentzel Daniel Huang Lora WLe‘SLS Leman Akoglu
Joshua Jones Oded Green Erica Briscoe Keif Hen
William T. Young Robert Pierce
David A. Bader
Rudolph Louis Mappus IV Jed Irvine
Edmond Chow Matthew Reardon Danai Koutra
Vinay Bettadapura Anita Zakrzewska ~ Alan Fern
an A. Essa Shubhomoy Das
Ted E. Senator

(d) Y2013: Add ‘D’

n Horg Chau

YasushiSak
Christos Fa\outsos
Andrew Emmott

Pattern I
@ Pattern K

Hanghang Tong
U.Kang Tina Eliassi-Rad Fei Wang

Christos Faloutsos o gu

Shigiang Yang
Leman Akoglu Peng Cui Meng Jiang
Brian Gallagher
i Neil Shah
Danai Koutra =N ‘Alex Beutel
artha P. Talukdar
Evangelos E. Papalexank‘e?n Berthold Nicholas D. Sidiropoulos

Tobias Kotter

Stephan Glnnemann ~ Tom M. Mitchell

(f) Y2015: Split ‘H’ to ‘I’ & ‘J’; Remove ‘E’;
Shrink ‘C’; Merge ‘J’ & ‘C’ into ‘K’.

Fig. 6 Shown is the evolution of patterns in the DBLP network from Year 2010 to 2015.

information captured in the sets of patterns and the actions performed on them.
We analyze the results'* obtained for DBLP and THEMoOVIEDB.

DBLP. For the DBLP graph, we discuss one of the various captured chains
of subgraph patterns, which demonstrates the evolution of the communities of 92
authors centered mainly around Christos Faloutsos from Year 2010 to 2015. This
evolution is shown in Figure 6. Initially (Figure 6a) in Year 2010, two surprisingly
dense communities shown as pattern ‘A’ and ‘B’ are discovered, where Christos
Faloutsos is a common link between the two communities. These two different
communities have been condensed in the following year and merged to form a
single community, shown as pattern ‘C’ (Figure 6b) with Christos Faloutsos and
U Kang being some of the prominent names. This collaboration network shrinks
the next year (Figure 6¢). In Year 2013 another very densely connected set of
authors is discovered, shown as pattern ‘D’ in Figure 6d. Surprisingly, in the sub-
sequent year, this set of authors got split into two different communities of three
authors each, i.e., Lisa Friedland, David D. Jensen & Amanda Gentzel and Chris-
tos Faloutsos, Jay Yoon Lee & Danai Koutra. However, the latter set of authors
got merged with a newly discovered densely connected set of authors centered

14 In the following figures, graphs are shown such that the text size of a vertex label is
proportional to its degree. That is, if vertex degree is higher then text size is larger and vice

versa.

30 Sarang Kapoor, Dhish Kumar Saxena and Matthijs van Leeuwen

® Pattern A @ Pattern F

M e @ PatternB Pattern G
® Pattern S
Ericidle v [
Liam Neeson
B i Jason udeiis
Aidan Tumer \anh‘d(&'\e;nu n\mw E RogeMictel
g sl Hale
L g4 P
Vanu Bemnet T Lee Pace o
(a) Y2012: Add ‘A’ & ‘B’. (b) Y2013: Split ‘A’ into 8 patterns named in

alphabetical order from ‘C’ to ‘J’; Add ‘K’;
Merge all patterns ‘B’ to ‘K’ except ‘F’ and
‘G’ to form ‘S’ with ‘L’ to ‘R’ as intermediate
patterns.

Pattern T @ Pattern T
PatternU @ Pattern AG

Héctor Elizondo
Gabrielglesias Joe Pingue

Jamesfranco Jack McBrayer
anlegh

ot Ganbl - HoGSTias e gattemgv Wil it ZacharyKrighton Dennis Haysbert
Chad e WayneBr ©® Pattern § :
‘ e L«\ sy @ PatternX David Koepy Adam{eine Ahson Brig Mm» Genesws Rodnguez
Sulivan Stzpleion Den LadyGaga Pattern Y ncis Ford Coppol ortige. LaoBrf
Peter Ferdinandd g M Za:awmrgm Pryka Cropa iy walen .., Forg: mR»an.lnhnsoa 2 b \mma»,dy,Gaga
Caitn Camichael S Hos Jmackllfcﬂrayev o Bl S eveCare!I Pnyanka(}hapralwk Ha\e;{Joe{Osmt Anna'Eunn]
P Cate Blanc Haed st
Ron Elard e A L Georgé Lucas 3y MarkPelLegnnn bt Justh\eber i
GiancaroEsposio e S T: st esBroln Anthony Hopkins e JELW.@S,;" L el
Chnsmphevﬁwehev L =2 i Wt MM ard Dre o IZ#“ AN\ckNﬂ\ Rﬂ
Hannibal Buress it st Géness Rodriguez § Boh B BlNyCrysta\
Halsion Sage W;Mmm Sylvester Stallone /i Verd i fofman . Tor Bk , - HEZ’W W o e
oSt Kl Wit T W gt 2 VA CinEitiood e
iva Schaffer - Troy Baker LE s ale 4 it Smiertawencs
[g Cs DrewBamymore — Jemnferbudson e Al Vondar
0 i e 4
HleBery Rl Femes . o sameHalleBemy

i it Y
DB aiisds @ Pattern AC - PattenZ et
HekeSperson @ Pattern AD @ Pattern AA

@ Pattern AE Pattern AB
() Y2014: Split ‘S’ into 12 patterns shown in (d) Y2017: Add ‘AF’; Merge ‘AE’ & ‘AF’ to
order from ‘T’ to ‘AE’; Remove ‘F’ & ‘G’. ‘AG’.

Sylvester Stallone

Fig. 7 Shown is the evolution of patterns in THEMOVIEDB network from Year 2012 to 2017.

around Christos Faloutsos and Evangelos E. Papalexakis, shown by pattern ‘H’
in Figure 6e. Finally, in year 2015 the two different communities where Christos
Faloutsos is the common link, i.e., pattern ‘C’ and a part of pattern ‘H’, merge to
form one community with Neil Shah starting the collaboration with Leman Akoglu
and others. In short, we captured how the community around one author with a
large number of collaborations evolve over time.

TheMovieDB. In this network, we discussed the discovered evolution of dif-
ferent patterns or communities of 1019 actors from Year 2012 to 2017, as shown
in Figure 7. For each found pattern, we also find the associated genres using the
hypergeometric test. A genre is considered to be significant if the p-value after
Bonferroni Correction (with factor 19) is less than le — 1. During the Year 2012,
two patterns ‘A’ and ‘B’ are discovered (Figure 7a). Pattern ‘A’, with significant
genres Action and Comedy, includes vertices such as Liam Neeson, Josh Pence,
David Gyasi and Nick Holder, all with high vertex degree. Pattern ‘B’ comprises
of Sally Field and Lee Pace as high degree vertices and has Adventure and Fantasy
as significant genres. In Year 2013, Pattern ‘A’ splits into 8 resulting patterns (‘C’,
‘D’ ‘B, ‘B, G, ‘HD, T ¢J’). This suggests that these 8 patterns represents 8 dif-
ferent communities of actors. Surprisingly, among these 8 patterns (which are all
non-overlapping disjoint patterns), 6 patterns (excluding ‘F’” and ‘G’) got merged

Online Summarization of Dynamic Graphs using Subjective Interestingness 31

to form Pattern ‘S’ only after pattern ‘K’ is discovered (Figure 7b). Hence, it is
found that the actors of the pattern ‘C’, ‘D’, ‘E’, ‘H’, ‘I’ and ‘J’ are indirectly con-
nected through the actors in pattern ‘K’. Some of the notable actors of pattern ‘S’
include James Badge Dale, Kyle Chandler, Kirsten Dunst and Will Smith. Pattern
‘S’ has Romance, Crime and Western as the three significantly associated genres.
Pattern ‘S’ is decomposed into 12 different patterns in Year 2014 (Figure 7c). All
the 12 resulting patterns have different significantly associated genres such as, Ac-
tion with pattern ‘I’, Science Fiction with ‘U’, Documentary with ‘W’, Fantasy
with ‘X’, Animation & Family with ‘Y’ and ‘AE’, War with ‘Z’ & ‘AD’, Crime with
‘AA’, Drama with ‘AB’ and Comedy with ‘AC’. Most of the patterns disappear
in the following two years, i.e., 2015 and 2016, except patterns ‘T’ and ‘AE’. In
Year 2017, pattern ‘AE’ merges with a newly discovered pattern ‘AF’, resulting in
pattern ‘AG’. Thus, pattern ‘I’ and ‘AG’ are observed in Year 2017 (Figure 7d).
Some of the prominent actors in pattern ‘T’ are Sylvester Stallone, Lady Gaga,
Ben Kingsley and Alison Brie. Pattern ‘AG’ includes actors like Dustin Hoffman
and Oprah Winfrey and has Animation, Fantasy and Adventure as significant
genres.

This case presents how the collaboration between actors evolves over time. The
genres which are significantly associated to each pattern implies that our algorithm
successfully identifies different and evolving subgroups (or communities) in the
network.

7 Case Study: Airline Flight Network

To explore how the proposed approach and algorithm could be used in a real-world
scenario, we now present a case study on the US flight network'®. Flight networks
are typical examples of dynamic graphs that one would like to analyze on the fly,
e.g., to detect and monitor delays as early as possible.

Dataset. We use the scheduled and actual flight operating data for the month
of January 2017, with 298 airports (considered as vertices) and 450017 flights
operated in that month. The dataset has features such as scheduled departure and
arrival time, along with actual departure and arrival time, for each flight. Using
these features we create two types of networks: 1) in a scheduled flight network,
a directed edge for a given time interval is included from origin to destination
airport if at least one flight was scheduled to depart or arrive in that interval; 2)
in an actual flight network, a directed edge is included between two airports if at
least one flight actually departed or arrived in that interval.

For either type of network we create 31 independent instances, one for each
day of January 2017. Each network is segmented into 20 sequential snapshots, or
states, of one hour each (from 0400 hours to 2400 hrs, all converted to UTC -7). The
motivation behind choosing one hour as the length of a snapshot is that airliners
manage their operations in blocks of one hour duration each. For simplicity, we do
not consider cancelled flights in this case study.

Approach. We use DSSG to independently summarize both the scheduled
and actual flight network. In both the cases, we assume the analyst to have a prior
belief on the number of routes scheduled to be operated from each airport in the

15 source: https://www.transtats.bts.gov/

32 Sarang Kapoor, Dhish Kumar Saxena and Matthijs van Leeuwen

o Schedule Day 14 Actual Day 14 0 Actual Day 21 Actual Day 14
g . g
3 3
&g 99
3 [" S gy rey sy Shpy S A R g R 1 TR T o b el i A 9
5
& &
0o & 0o “
s 4 s 5
= B
S & S &
<8 <3
3 3 - “
& &
S bmcos cmmomes pos oo fmm o ecomms o @ pa o 3 " e o - bo oo o
< <
PRSI S I S s SEISL ST F PP D PRSP A P>
MEXF IR GGG YA FILXF I Y G FY Y
Hour of the day Hour of the day

(a) Scheduled vs actual operations of day 14. (b) Actual operations of day 14 vs day 21.

Fig. 8 Actions (and their types) throughout the day as found by DSSG on the scheduled and
actual flight networks of two days.

initial snapshot (i.e., the total number of airports from where at least one flight is
arriving and the total number of airports to where at least one fight is departing).
We then inspect the resulting summaries.

Summaries. As the data is large and dynamic, visualizing all patterns or
the complete summary at once is not practical. Instead, Figure 8 visualizes the
sequence of actions identified by our method on a given flight network, to provide a
high-level overview—or fingerprint—of the summary. Such fingerprints can then be
compared to spot deviations between the scheduled and actual dynamic networks.

Comparing summaries. An analyst could investigate the discovered patterns
(as shown in Section 6.5), but here we first investigate the differences between the
obtained summaries, to learn about unexpected events (here: delays) causing the
observed network to differ from the expected network. For illustrative purposes,
we use the scheduled network of day 14, and actual networks of days 14 and 21.

Inspecting the fingerprints in Figure 8 shows that the actual flight network of
day 14 behaves differently from both the scheduled flight network of day 14 (Fig-
ure 8a) and the actual flight network of the same day one week later (Figure 8b).
For example, in the initial snapshot (0400-0500hrs) in Figure 8a, the prior dis-
tribution sufficiently described the scheduled flight network of day 14 and hence
no new patterns are discovered. In the actual flight network of that day, however,
two patterns are discovered for that snapshot. A closer look at the data reveals
that this is caused by flights that operated either ahead of time or delayed. In
Figure 8b, similar observations can be made for the actual flight networks for two
days exactly on week apart. To further investigate the causes of deviations, an an-
alyst could inspect the patterns and actions. DSSG provides a sequence of actions
(descending by ZG) that an analyst could learn from, especially when supported
by an environment for interactive data and pattern exploration (see Discussion).

Inspecting patterns. To further understand the differences between the flight
networks, we consider two typical block hours, i.e., 1400-1500 and 1500-1600 hours.
Figure 9 shows the top 5 patterns'® with regard to information content (ZC) and
for the same three different networks as above. Note that this means that we only
show patterns that are newly discovered or revised in the current state.

From Figure 9a we observe that, for the scheduled flight network of day 14
during 1400-1500 hours, four out of the five patterns are star-shaped, with hub
airports. In the first pattern (shown in red) MSP is the hub, with flights departing

16 An analyst could of course visualize all actions or patterns in the summaries, but we only
show the top 5 patterns for reasons of space and clarity.

Online Summarization of Dynamic Graphs using Subjective Interestingness 33

TREYY

(e) Actual Day 21, 1400-1500 hours (f) Actual Day 21, 1500-1600 hours

Fig. 9 The top 5 patterns with regard to information content discovered from each respective
flight network. Color coding: the pattern with highest information content is shown in red,
followed in order by magenta, green, blue, and orange. Labels indicate airport codes.

for airports such as ATW, LNK and MEM. Similarly, patterns 2 (magenta) and
4 (blue) have SNA and ORD as hubs, respectively. Pattern 3 (green) has STL
and EWR as hubs, where flights are departing, and two other airports, OMA and
OAK, where flights are arriving. These patterns indicate that a large number of
flights are scheduled to depart from hubs like MSP, SNA, ORD and STL, while
flights are expected to arrive at OAK and OMA. Finally, pattern 5 is a connected
set of airports including SFO, XNA, ORD and SCE.

In the actual flight network for the same timeslot in Figure 9¢, the most infor-
mative pattern is a set of densely connected airports including SLC, DEN, LAS,
and SEA (shown in red). The second pattern (magenta) is similar to the most
informative pattern found in the scheduled network (red in Figure 9a), with MSP

34 Sarang Kapoor, Dhish Kumar Saxena and Matthijs van Leeuwen

as hub. Patterns 3, 4, and 5 are also star-shaped, with hubs SLC, JAX, and SEA
respectively. Upon investigating the underlying data we find that patterns 1 and 3
comprise flights having a combined positive delay (flights departing and/or arriv-
ing late) of 1083 minutes and 23 minutes, respectively. This is a relevant discovery,
as 1083 minutes is a large combined delay and pattern 1 was not found in the sched-
uled data. For pattern 2, which we did find in the scheduled network, no positive
delay is observed (instead we find a combined negative ‘delay’ of roughly 9 min-
utes, which is very moderate). For patterns 4 and 5 negative delays are observed.
Similar observations can be made for the block hour in Figures 9¢—9d.

The fingerprints of Figure 8b already suggested that the actual flight networks
of days 14 and 21 differ, and this is confirmed by the different top 5 patterns
shown in Figures 9e-9f. Interestingly, none of these patterns is present in either
the scheduled or actual flight network of day 14, and these patterns are also found
to correspond to substantial positive and/or negative delays.

Together, these observations indicate that by comparing the summaries and
patterns discovered by DSSG, an analyst can learn about sets of connected airports
where structural operational deviations from the schedule occurred, which often
resulted in delays. As such, this case study served to illustrate how our approach
could be used in a real-world scenario where online and incremental analysis of
structural changes in dynamic graphs can render valuable insights.

8 Discussion

We propose a framework for summarizing sequential datasets in an online setting.
We define information gain using both the maximum entropy principle and mini-
mum description length principles. This measure enables not only to quantify the
informativeness of a pattern, but also of the proposed actions (or atomic changes)
in our framework, which enables to capture the evolution in a graph by evolving
patterns. The proposed generic framework for subjective summarization of sequen-
tial data can be further instantiated for different types of evolving datasets, such
as event sequence databases. In this paper, we instantiated the proposed generic
framework for dynamic (simple) graphs.

This work focuses on the discovery of an online summary of dynamic graphs,
by iteratively identifying actions with maximum information gain. The summary
of a dynamic network contains a set of subgraph patterns (or constraints) along
with captured changes in those (chains of) patterns over time. The findings from
the experiments performed on different networks indicate that 1) the generated
summaries are informative with regard to the analyst’s prior knowledge about
the data, with relatively high observed compression ratios; 2) the sets of subgraph
patterns identified to summarize the networks are found to be relatively dense; and
3) the discovered evolving patterns provide an informative sequence that can be
further inspected and analyzed. Also, with the proposed measures of information
gain and information content, we show in the airline case study that our method
can be used to rank the found patterns.

We observe during the experiments that a pattern might appear regularly or
sporadically in different snapshots of a dynamic network. This leads to a situation
where our method learns and forgets the same pattern multiple times. However, on
each occasion, our method treats the same pattern as newly acquired knowledge.

Online Summarization of Dynamic Graphs using Subjective Interestingness 35

It would be interesting to identify these instances while summarizing a network
over time. A way to address this limitation could be to label each subgraph pat-
tern and explore the similarity between two subgraph patterns. Thus, similar to
TimeCrunch (Shah et al., 2015), the periodicity of a pattern could be explored.
Another limitation of our work is the consideration of prior belief of the analyst. In
this setting, we only consider that the analyst has prior knowledge on the initial
snapshot and is interested in observing the changes in the network. A different
setting may consider that the analyst knows about the different snapshots of the
network.

One future opportunity includes improving the scalability of the proposed
framework. The runtime of the proposed algorithm is currently higher than the
two methods used to compare the summaries provided by DSSG, including Time-
Crunch (Shah et al., 2015) and SDGM (Tsalouchidou et al., 2020). Notably, the
other two methods have a highly optimized implementation using parallel and
distributed computing capabilities. For now, DSSG sequentially executes multiple
procedures, including the number of independent seed runs of the hill climber.
These procedures are highly independent and could be executed simultaneously.
Hence, DSSG has several inherent features which may allow a parallelized imple-
mentation. This would significantly reduce the runtime and improve the scalability
of the algorithm. Another future opportunity includes the development of a tool
based on the proposed framework, for interactive visualization and exploration
of changes identified in a dynamic network. This tool would further provide a
user-friendly platform for analysts to learn how a network evolves with time.

9 Conclusion

We presented the novel problem of subjective summarization of sequential data in
an online manner. As a specific instance of this generic problem, online summa-
rization of dynamic graphs was introduced. We presented a framework to solve this
problem, which has been built on the existing ideas related to maximum entropy
principle, the minimum description length principle, and subjectively interesting
subgraph patterns. We then introduced an efficient algorithm, called DSSG, which
is followed by extensive experiments on real-world datasets. Through experimental
results, we demonstrated the effectiveness of the proposed algorithm. The gener-
ated summaries are found to be informative with regard to the analyst’s prior
knowledge about the data. We conclude this from the observed substantial com-
pression ratios and the fact that compression equates learning. We have also found
different sequences of patterns, which evolved over time in a network. We also pre-
sented a case study and demonstrated a potential use of the proposed method in
the airline domain. Comparison of two different summaries of the airline network,
using the scheduled and the actual flight data, revealed potentially informative
events. As a part of future work, it would be interesting to extend the proposed
method to incorporate a feature to capture periodicity of the patterns; another is
to extend this method to multigraphs, weighted graphs, and attributed graphs. Fi-
nally, as a part of our ongoing/future work, we aim to develop a tool for interactive
visualization and exploration of the found patterns.

36 Sarang Kapoor, Dhish Kumar Saxena and Matthijs van Leeuwen

Acknowledgements This research has been conducted as part of an Indo-Dutch project
titled ‘A Systems approach towards Data Mining and Predictions in Airline Operation’ (SAP-
PAO), grant no.: MIT-861-MID. We gratefully acknowledge the project sponsors MeitY (In-
dia), NWO (The Netherlands), and GE Aviation (India).

References

Abello J, Resende MG, Sudarsky S (2002) Massive quasi-clique detection. In: Latin
American symposium on theoretical informatics, Springer, pp 598-612

Adhikari B, Zhang Y, Bharadwaj A, Prakash BA (2017) Condensing temporal
networks using propagation. In: Proceedings of the 2017 SIAM International
Conference on Data Mining, STAM, pp 417425

Ahmed R, Karypis G (2012) Algorithms for mining the evolution of conserved
relational states in dynamic networks. Knowledge and Information Systems
33(3):603-630

Ahmed R, Karypis G (2015) Algorithms for mining the coevolving relational motifs
in dynamic networks. ACM Transactions on Knowledge Discovery from Data
(TKDD) 10(1):1-31

Alpert CJ, Kahng AB, Yao SZ (1999) Spectral partitioning with multiple eigen-
vectors. Discrete Applied Mathematics 90(1-3):3-26

Araujo M, Papadimitriou S, Giinnemann S, Faloutsos C, Basu P, Swami A, Pa-
palexakis EE, Koutra D (2014) Com2: fast automatic discovery of temporal
(‘comet’) communities. In: Pacific-Asia Conference on Knowledge Discovery and
Data Mining, Springer, pp 271-283

Bazargan M (2016) Airline operations and scheduling. Routledge

Bendimerad A, Mel A, Lijffijt J, Plantevit M, Robardet C, De Bie T (2020) Sias-
miner: mining subjectively interesting attributed subgraphs. Data Mining and
Knowledge Discovery 34(2):355-393

Cook DJ, Holder LB (1994) Substructure discovery using minimum description
length and background knowledge. J Artif Int Res 1(1):231-255

De Bie T (2011) Maximum entropy models and subjective interestingness: an
application to tiles in binary databases. Data Mining and Knowledge Discovery
23(3):407-446

Ding CH, He X, Zha H, Gu M, Simon HD (2001) A min-max cut algorithm for
graph partitioning and data clustering. In: Proceedings 2001 IEEE International
Conference on Data Mining, IEEE, pp 107-114

Flake GW, Tarjan RE, Tsioutsiouliklis K (2004) Graph clustering and minimum
cut trees. Internet Mathematics 1(4):385-408

Galimberti E, Barrat A, Bonchi F, Cattuto C, Gullo F (2018) Mining (maximal)
span-cores from temporal networks. In: Proceedings of the 27th ACM Inter-
national Conference on Information and Knowledge Management, ACM, pp
107-116

Goebl S, Tonch A, Béhm C, Plant C (2016) Megs: Partitioning meaningful sub-
graph structures using minimum description length. In: 2016 IEEE 16th Inter-
national Conference on Data Mining (ICDM), IEEE, pp 889-894

Griinwald PD (2007) The minimum description length principle. MIT press

Khan A, Aggarwal C (2016) Query-friendly compression of graph streams. In: 2016
IEEE/ACM International Conference on Advances in Social Networks Analysis
and Mining (ASONAM), pp 130-137

Online Summarization of Dynamic Graphs using Subjective Interestingness 37

Koutra D, Kang U, Vreeken J, Faloutsos C (2014) Vog: Summarizing and under-
standing large graphs. In: Proceedings of the 2014 SIAM international confer-
ence on data mining, STAM, pp 91-99

van Leeuwen M, De Bie T, Spyropoulou E, Mesnage C (2016) Subjective interest-
ingness of subgraph patterns. Machine Learning 105(1):41-75

LeFevre K, Terzi E (2010) Grass: Graph structure summarization. In: Proceedings
of the 2010 SIAM International Conference on Data Mining, STAM, pp 454-465

Lin YR, Sun J, Sundaram H, Kelliher A, Castro P, Konuru R (2011) Com-
munity discovery via metagraph factorization. ACM Trans Knowl Discov
Data 5(3), DOI 10.1145/1993077.1993081, URL https://doi.org/10.1145/
1993077.1993081

Luce RD (1950) Connectivity and generalized cliques in sociometric group struc-
ture. Psychometrika 15(2):169-190

Matsuda H, Ishihara T, Hashimoto A (1999) Classifying molecular sequences using
a linkage graph with their pairwise similarities. Theoretical Computer Science
210(2):305-325

Mokken RJ (1979) Cliques, clubs and clans. Quality & Quantity 13(2):161-173

Navlakha S, Rastogi R, Shrivastava N (2008) Graph summarization with bounded
error. In: Proceedings of the 2008 ACM SIGMOD international conference on
Management of data, ACM, pp 419-432

Newman ME (2006) Modularity and community structure in networks. Proceed-
ings of the national academy of sciences 103(23):8577-8582

Newman ME, Girvan M (2004) Finding and evaluating community structure in
networks. Physical review E 69(2):026113

Qu Q, Liu S, Zhu F, Jensen CS (2016) Efficient online summarization of large-scale
dynamic networks. IEEE Transactions on Knowledge and Data Engineering
28(12):3231-3245

Rissanen J (1983) A universal prior for integers and estimation by minimum de-
scription length. The Annals of statistics pp 416-431

Robardet C (2009) Constraint-based pattern mining in dynamic graphs. In: 2009
Ninth IEEE International Conference on Data Mining, pp 950-955

Rozenshtein P, Tatti N, Gionis A (2017) Finding dynamic dense subgraphs. ACM
Transactions on Knowledge Discovery from Data (TKDD) 11(3):27

Rozenshtein P, Bonchi F, Gionis A, Sozio M, Tatti N (2018) Finding events in
temporal networks: Segmentation meets densest-subgraph discovery. In: 2018
IEEE International Conference on Data Mining (ICDM), IEEE, pp 397-406

Saran D, Vreeken J (2019) Summarizing dynamic graphs using mdl. In: Proceed-
ings of the ECMLPKDD Workshop on Graph Embedding and Mining (GEM),
URL https://publications.cispa.saarland/3002/

Scharwéchter E, Miiller E, Donges J, Hassani M, Seidl T (2016) Detecting change
processes in dynamic networks by frequent graph evolution rule mining. In:
2016 IEEE 16th International Conference on Data Mining (ICDM), IEEE, pp
1191-1196

Seidman SB (1983) Network structure and minimum degree. Social networks
5(3):269-287

Seidman SB, Foster BL (1978) A graph-theoretic generalization of the clique con-
cept. Journal of Mathematical sociology 6(1):139-154

Shah N, Koutra D, Zou T, Gallagher B, Faloutsos C (2015) Timecrunch: In-
terpretable dynamic graph summarization. In: Proceedings of the 21th ACM

38 Sarang Kapoor, Dhish Kumar Saxena and Matthijs van Leeuwen

SIGKDD International Conference on Knowledge Discovery and Data Mining,
ACM, pp 1055-1064

Sun J, Faloutsos C, Faloutsos C, Papadimitriou S, Yu PS (2007) Graphscope:
parameter-free mining of large time-evolving graphs. In: Proceedings of the 13th
ACM SIGKDD international conference on Knowledge discovery and data min-
ing, ACM, pp 687-696

Tang N, Chen Q, Mitra P (2016) Graph stream summarization: From big bang
to big crunch. In: SIGMOD 2016 - Proceedings of the 2016 International Con-
ference on Management of Data, Association for Computing Machinery, Pro-
ceedings of the ACM SIGMOD International Conference on Management of
Data, pp 1481-1496, DOT 10.1145/2882903.2915223, 2016 ACM SIGMOD In-
ternational Conference on Management of Data, SIGMOD 2016 ; Conference
date: 26-06-2016 Through 01-07-2016

Toivonen H, Zhou F, Hartikainen A, Hinkka A (2011) Compression of weighted
graphs. In: Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining, ACM, pp 965-973

Tsalouchidou I, Bonchi F, Morales GDF, Baeza-Yates R (2020) Scalable dynamic
graph summarization. IEEE Transactions on Knowledge and Data Engineering
32(2):360-373

Tsourakakis C, Bonchi F, Gionis A, Gullo F, Tsiarli M (2013) Denser than the
densest subgraph: extracting optimal quasi-cliques with quality guarantees. In:
Proceedings of the 19th ACM SIGKDD international conference on Knowledge
discovery and data mining, ACM, pp 104-112

Veremyev A, Prokopyev OA, Butenko S, Pasiliao EL (2016) Exact mip-based
approaches for finding maximum quasi-cliques and dense subgraphs. Computa-
tional Optimization and Applications 64(1):177-214

Wu Q, Hao JK (2015) A review on algorithms for maximum clique problems.
European Journal of Operational Research 242(3):693-709

You Ch, Holder LB, Cook DJ (2009) Learning patterns in the dynamics of bio-
logical networks. In: Proceedings of the 15th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, Association for Computing
Machinery, New York, NY, USA, KDD ’09, p 977-986, DOI 10.1145/1557019.
1557125, URL https://doi.org/10.1145/1557019.1557125

