
Robust rules for prediction and description

Hugo Manuel Proença

Keywords machine learning · data mining · rule lists · subgroup lists · subgroup
discovery · pattern mining · interpretability · the Minimum Description Length (MDL)
principle · Bayesian statistics.

SIKS Dissertation Series No. 2021-23
The research reported in this thesis has been carried out under the auspices of SIKS,
the Dutch Research School for Information and Knowledge Systems.

Copyright © Hugo Manuel Proença orcid.org/0000-0001-7315-5925, 2021
All rights reserved

ISBN: 978-94-6332-792-3
This work is part of the research programme Indo-Dutch Joint Research Programme
for ICT 2014 with project number 629.002.201, SAPPAO, which is (partly) financed
by the Netherlands Organisation for Scientific Research (NWO), in collaboration with
IIT Roorkee and GE Global Research Bangalore.

Printed by: GVO Drukkers & Vormgevers B.V.
Cover: Kimber McLaughlin @pixelatedpeach

Typeset using LATEX, diagrams generated using MATPLOTLIB and SEABORN.

https://orcid.org/0000-0001-7315-5925
https://orcid.org/0000-0001-7315-5925

Robust rules for prediction and description

Proefschrift

ter verkrijging van
de graad van doctor aan de Universiteit Leiden,
op gezag van rector magnificus prof.dr.ir. H. Bijl,
volgens besluit van het college voor promoties

te verdedigen op dinsdag 26 oktober 2021
klokke 10.00 uur

door

Hugo Manuel Proença

geboren te Hong Kong
in 1990

Promotiecommissie

Promotor: Prof.dr. T.H.W. Bäck
Co-promotor: Dr. M. van Leeuwen
Overige leden: Prof.dr. A. Plaat

Prof.dr.ir. N. Mentens
Prof.dr. P.D. Grünwald (CWI, The Netherlands)
Prof.dr. A.P.J.M. Siebes (Universiteit Utrecht, The Netherlands)
Prof.dr. J. Vreeken (CISPA Helmholtz Center for

Information Security, Germany)

aos meus pais

“You look at where you’re going and where you are and it never makes sense,
but then you look back at where you’ve been and a pattern seems to emerge.

And if you project forward from that pattern, then sometimes you can come up with
something.”

Robert M. Pirsig in Zen and the Art of Motorcycle Maintenance

Contents

List of symbols iv

List of acronyms viii

1 Introduction 1
1.1 Predictive rule lists . 3
1.2 Subgroup lists . 4
1.3 Research question and contributions 6
1.4 Outline of this dissertation . 8
1.5 Publications . 9

2 Preliminaries 11
2.1 Introduction to rules . 11
2.2 Supervised data . 14
2.3 Association rules, predictive rules and subgroups 18

2.3.1 Interpretation as probabilistic rule 19
2.3.2 Maximum likelihood estimation 20

2.4 Rule lists, predictive rule lists, and subgroup lists 21
2.5 Classification performance measures 23
2.6 Subgroup discovery measures . 27

2.6.1 Top-k quality measures . 28
2.6.2 Weighted Kullback-Leibler divergence 28

2.7 Subgroup set discovery measures . 30

ii

3 MDL for rule lists 33
3.1 The Minimum Description Length (MDL) principle 36
3.2 Model encoding . 36
3.3 Data encoding . 38

3.3.1 Two types of data encoding . 40
3.4 Data encoding: nominal target variables 41

3.4.1 Encoding categorical distributions with known parameters . . . 42
3.4.2 Encoding categorical distributions with unknown parameters . . 42
3.4.3 Relationship of MDL-optimal subgroup lists to WKL-based SD . 44
3.4.4 Relationship of MDL-optimal subgroup lists to Bayesian testing 46

3.5 Data encoding: numeric target variables 46
3.5.1 Encoding normal distributions with known parameters 47
3.5.2 Encoding normal distributions with unknown parameters 48
3.5.3 Relationship of MDL-optimal subgroup lists to WKL-based SD . 50
3.5.4 Relationship of MDL-optimal subgroup lists to Bayesian testing 52

3.6 A new measure for subgroup sets: the sum of WKL divergences 52
3.7 Theoretical difference between subgroup list and predictive rule list . . 53

4 Discovering predictive rule lists with CLASSY 57
4.1 Related work . 59

4.1.1 Rule-based classifiers . 60
4.1.2 Pattern mining . 61
4.1.3 MDL-based data mining . 61

4.2 The CLASSY algorithm . 62
4.2.1 Separate-and-conquer greedy search 62
4.2.2 Compression gain . 63
4.2.3 Candidate generation . 65
4.2.4 Finding good rule lists . 65
4.2.5 Time and space complexity . 66

4.3 Empirical evaluation . 67
4.3.1 Compression versus classification 70
4.3.2 Candidate set influence . 71
4.3.3 Classification performance . 74
4.3.4 Interpretability . 75
4.3.5 Statistical significance testing 77
4.3.6 Overfitting . 79
4.3.7 Runtime . 79
4.3.8 Discussion . 79

4.4 Conclusions . 83

iii

5 Discovering subgroup lists with RSD 85
5.1 Related work . 87

5.1.1 Subgroup discovery . 87
5.1.2 Pattern mining . 90
5.1.3 MDL in pattern mining . 91
5.1.4 Algorithmic comparison in the literature 91

5.2 The RSD Algorithm . 93
5.2.1 Algorithm high-level description 93
5.2.2 Compression gain . 94
5.2.3 Statistical testing interpretation of compression gain 95
5.2.4 Beam search for subgroup generation 96
5.2.5 The Robust Subgroup Discoverer algorithm 98
5.2.6 Time and space complexity . 99

5.3 Empirical evaluation . 101
5.3.1 Influence of RSD hyperparameters 102
5.3.2 Setup of the subgroup quality performance comparisons 102
5.3.3 Nominal target results . 105
5.3.4 Numeric target results . 106
5.3.5 Runtime comparison . 107

5.4 Case Study: Hotel Bookings . 111
5.5 Case study: flight delay analysis . 112

5.5.1 Analysis of subgroups obtained with RSD 113
5.6 Case study: socioeconomic background and university performance . . 117

5.6.1 Analysis of subgroups obtained with RSD 117
5.7 Conclusions . 122

6 Conclusions 123
6.1 Summary . 124
6.2 Discussion . 125
6.3 Future Work . 127

6.3.1 Short and medium-term research 127
6.3.2 Long-term research . 128

Appendices 131

Appendix A Kullback-Leibler divergence between two normal distributions 133

Appendix B Prequential plug-in encoding for rule lists with categorical distribu-
tions 135

iv

Appendix C Normalized Maximum Likelihood for rule lists with categorical dis-
tributions 139

Appendix D Bayesian encoding of a normal distribution with mean and standard
deviation unknown 143

Appendix E Bayesian encoding convergence to BIC for large n 147

Appendix F Datasets used for classification experiments 149

Appendix G RSD supplementary empirical evaluation 151
G.1 Datasets used for subgroup discovery experiments 151
G.2 Analysis of RSD compression gain hyperparameter 154
G.3 Analysis of RSD beam search hyperparameters 156
G.4 Results of non-sequential subgroup set discovery algorithms 159

Bibliography 161

Samenvatting 173

Summary 175

Resumo 177

List of publications 179

Acknowledgements 181

Titles in the SIKS dissertation series since 2011 185

Curriculum Vitae 207

List of symbols

Supervised Dataset

D Labelled dataset.

X Dataset of explanatory variables of D.

X An explanatory variable of X.

X Domain of X.

x A explanatory variables sample of X.

x The value of sample x for variable X.

Y Dataset of target variables of D.

Y An target variable of Y.

Y Domain of Y .

y A target variables sample of Y.

y The value of sample y for variable Y .

i Index for subsetting by row.

j Index for subsetting by column.

v A generic explanatory variable.

vi List of symbols

k Number of classes of a nominal target variable.

n Number of examples in dataset D.

m Number of explanatory variables.

t Number of target variables.

d Subscript associated with dataset distribution or defaul rule.

Model classes

M Generic model (either a rule list or a subgroup list).

RL Rule list model (including rules R and default rule).

R Rules in model RL.

r A rule.

SL Subgroup list model (including subgroups S and default rule).

S Subgroups in model SL.

s A subgroup.

ω Number of rules/subgroups in M .

a Description of a subgroup s or a rule r.

ai Description of the ith rule/subgroup in model M.

Da = {Xa,Ya} Samples of dataset D covered by description a.

Di = {Xi,Yi} Samples of dataset D covered by the ith description in model M.

Dist(Θ) Generic probability distribution with parameters Θ.

N (µ;σ) Normal probability distribution with parameters µ and σ.

Cat(p1, · · · , pk) Categorical probability distribution with pi probability per category.

µ Mean value parameter.

σ Standard deviation parameter.

δ Effect size (ratio of µ and σ).

θ̂ Maximum likelihood estimation of parameter θ.

List of symbols vii

Subgroup Discovery

q(a) Subgroup discovery quality measure.

Q(S) Subgroup set discovery quality measure.

f(Θ̂a, Θ̂d) Function of differences between distribution Θ̂a and Θ̂d.

α Tradeoff between subgroup coverage and distribution difference.

KL Kullback-Leibler divergence general form.

KLCat Kullback-Leibler divergence for categorical distributions.

KLµ Kullback-Leibler divergence for location distributions.

KLµ,σ Kullback-Leibler divergence for normal distributions.

WKL Weighted Kullback-Leibler divergence general form.

SWKL Sum of Weighted Kullback-Leibler divergences.

MDL

L(· · ·) Length of encoding.

` Log-likelihood.

LN Universal code of integers.

LNML(Y ij) Normalized Maximum Likelihood length of encoding of data Y ij .

C(na, k) Multinomial distribution complexity with na points and k categories.

LBayes Bayesian length of encoding with improper priors.

Y i|2 The two points that make the Bayesian encoding proper.

LBayes2.0 Bayesian length of encoding made proper with first 2 points.

Γ(n) Gamma function, the extension of the factorial to real numbers.

Algorithm

∆βL(D,M ⊕ a) Compression gain of adding description a to model M .

β Level of normalization of the compression gain.

ζ Set of all items (possible single conditions) in X.

viii List of symbols

stats Statistics of a subgroup.

dmax Beam search maximum depth of search.

wb Beam search beam width.

ncut Number of cut points for numeric discretization.

Acronyms

AUC Area Under the receiver operator Curve.

BIC Bayesian Information Criterion.

BTS Bureau of Transportation Statistics.

CART Classification And Regression Trees.

CORELS Certifiably Optimal RulE ListS.

CRS Computerized Reservation System.

DSSD Diverse Subgroup Set Discovery.

EDA Exploratory Data Analysis.

EWR NEWaRk liberty international.

FN False Negative.

FP False Positive.

FPR False Positive Rate.

FSSD Fast and efficient algorithm for Subgroup Set Discovery.

FURIA Fuzzy Unordered Rule Induction Algorithm.

x Acronyms

IDS Interpretable decision sets.

KDD Knowledge Discovery from Data.

KL Kullback-Leibler divergence.

MCMC Markov Chain Monte Carlo.

MCTS Monte Carlo Tree Search.

MCTS4DM Monte Carlo Tree Search for Data Mining.

MDL Minimum Description Length.

NML Normalized Maximum Likelihood.

RIPPER Repeated Incremental Pruning to Produce Error Reduction.

RSD Robust Subgroup Discoverer.

RSS Residual Sum of Squares.

SaC Separate and Conquer.

SAPPAO a Systems APproach towards data mining and Prediction in Airlines Opera-
tions.

SBRL Scalable Bayesian Rule Lists.

SD Subgroup Discovery.

SISD Subjectively Insteresting Subgroup Discovery.

SSD Subgroup Set Discovery.

SVM Support Vector Machine.

SWKL Sum of Weighted Kullback-Leibler divergences.

TN True Negative.

TP True Positive.

TPR True Positive Rate.

UA United Airlines.

WKL Weighted Kullback-Leibler divergence.

WRAcc Weighted Relative Accuracy.

1
Introduction

Rules are an essential part of what makes us humans. They are prime methods of
information storage and sharing, employed every day to assimilate complex ideas
into more manageable chunks of information. Their use can be found everywhere,
from the mental note “if I do not put the alarm, then I will not wake up” to the
intricate system of clinical diagnosis rules employed by physicians. A simple example
is a clinical rule for diagnosing the flu, given by “if a person has either a fever or sore
throat (between others), then she has the flu.”.
A rule does not need to be always correct, but in most cases, it should; otherwise,
it would not contain the essential information about the problem. Nonetheless, their
most compelling property is that they are easy to understand, i.e., interpretable. Thus,
it should not come as a surprise that researchers have long used them to describe the
world, be it in machine learning or data mining.

While machine learning is concerned with finding a representation from data that
can predict current and future events, data mining is concerned with extracting in-
teresting information from data. Even though both tasks are intertwined and rule
utilization is extensive in both fields, they stem from different intentions; hence, they
arrive at different outcomes. In machine learning, the combination of several rules
forms a model that makes predictions about future events. In data mining, sets of
rules describe patterns in data that are worth seeing.
In the wake of deep learning successes, one can question if rule-based models still
have a place; after all, deep learning models seem to make better predictions. Never-
theless, the complex nature of deep learning from which its success stems is also its
main limitation as its models are inscrutable and not accountable. For this reason, it
is imperative to find algorithms that can learn high-quality rule-based models from

2

data that are competitive in prediction while at the same time interpretable.

Even though research on rule-based models started more than half a century ago,
many questions remain to be answered, such as: What is an optimal set of rules?
What is the relationship between rules in data mining and machine learning? Can we
guarantee that the models are statistically robust before seeing future data?
To answer such questions, we apply the Minimum Description Length (MDL) principle
to rule-based models, which objectively quantifies the quality of models and guaran-
tees statistical robustness. Based on information theory, the principle states that the
best model is the simplest that describes the data well. This idea is a formal restate-
ment of Occam’s Razor, the law of parsimony that directly relates to the notion that a
good rule, but now a set of rules, should only describe what matters most in the data
for a particular task.

More specifically, we focus on ordered rule sets, i.e., rule lists. These are the first rule-
based model invented, and—compared to their unordered counterparts—they have
appealing mathematical properties that allow for a suitable formulation according to
the MDL principle. This dissertation establishes a better understanding of rules and
rule lists in machine learning and data mining. To distinguish between both, rule lists
are called predictive rule lists in machine learning and subgroup lists in data mining.
Our focus in machine learning is on supervised learning and in data mining on sub-
group discovery. For the less acquainted with the last topic, subgroup discovery is the
task of finding descriptions of data subsets—rules in tabular data—that deviate from
“normal behaviour” for a target variable. In both cases, the MDL principle formalizes
their optimality for a given dataset.

Motivation. The research conducted in this dissertation was in part motivated by the
real-world problem of flight delays, and in specific by the SAPPAO (a Systems AP-
proach towards data mining and Prediction in Airlines Operations) project. Its object-
ive was to integrate flight delay predictions in optimizing airplane and crew schedules
to reduce fuel and crew costs and decrease unnecessary CO2 emissions. In our part
of the project, we focused on the characterization of subgroups of flights with above-
average delays. We show an example of utilizing our theory and algorithms in publicly
available datasets in Section 5.5.

Chapter 1. Introduction 3

1.1 Predictive rule lists

Interpretable machine learning has recently witnessed a strong increase in attention
[26], both within and outside the scientific community, driven by the increased use
of machine learning in industry and society. This is especially true for applications
domains where decision making is crucial and requires transparency, such as in health
care [81, 68] and societal problems [67, 126].

While it is of interest to investigate how existing ‘black-box’ machine learning models
can be made transparent [104], the trend towards interpretability also offers op-
portunities for data mining, or Knowledge Discovery from Data (KDD), as this field
traditionally has a stronger emphasis on intelligibility.

In recent years several interpretable approaches have been proposed for supervised
learning tasks, such as classification and regression. Those include approaches based
on prototype vector machines [95], generalized additive models [84], decisions sets
[69, 122], and predictive rule lists [81, 125]. Restricting our focus to classification, we
make two important observations. First, we observe that state-of-the-art algorithms
[69, 122, 81, 125, 5] are designed for binary classification; no interpretable methods
specifically aimed at multiclass classification have been proposed, despite being a
common scenario in practice. Multiclass classification is more challenging because
of 1) the increased complexity in model search, due to the uncertain consequences
of favouring one class over the others, and 2) the lack of possibilities to prune the
search such as commonly used when finding, e.g., decision lists [5] or Bayesian rule
lists [125] for binary classification. Our second observation is that although current
methods based on rules [81, 125] and decision sets [69, 122] are effective, they
tend to have 1) a fair number of hyperparameters that need to be fine-tuned and 2)
limited scalability. Especially the need for hyperparameter tuning can be problematic
in practice, as it requires significant amounts of computation power and data (i.e.,
not all data can be used for training, as a substantial part has to be reserved for
validation).

To address these shortcomings, we introduce a novel approach to finding interpretable,
probabilistic multiclass classifiers that requires very few hyperparameters and results in
compact yet accurate classifiers. In particular, we will show that our method naturally
provides a desirable trade-off between model complexity and classification perform-
ance without the need for hyperparameter tuning, which makes the application of
our approach very straightforward and the resulting models both adequate classifiers
and easy to interpret.

We use probabilistic rule lists, as both the antecedent of a rule (i.e., a pattern) and its
consequent (i.e., a probability distribution) is interpretable [81]. Using a probabilistic
model has the additional advantage that one cannot only provide a crisp prediction,

4 1.2. Subgroup lists

but also make a statement about the (un)certainty of that prediction. Note that, given
a set of ordered patterns, we can trivially estimate the corresponding consequent
probability distributions from the data. The remaining question, then, is how to select
a set of patterns that together form an interpretable rule list.

Interpretable rule list discovery. Informally, the problem of finding interpretable
rule lists for prediction is: how to select a compact set of rules that together define a
predictive rule list that is accurate yet it does not overfit. Overfitting is not only im-
portant to ensure generalizability beyond the observed data, but it also aligns with
keeping the models as compact as possible: larger models are harder to interpret by a
human analyst [56] and more prone to overfit. Another layer of interpretability that
we consider is that the algorithm used to find these rule lists does not have many hy-
perparameters, and thus does not require much human intervention to obtain good
and reliable models.

Recent optimization [69] and Bayesian [125] approaches to obtain interpretable rule
lists for classification heavily rely on hyperparameters to achieve this, but those need
to be tuned by the analyst and we specifically aim to avoid this.
To accomplish this, the solution that we propose is based on the MDL principle [107,
48].

1.2 Subgroup lists

Exploratory Data Analysis (EDA) [118] aims at enhancing its practitioner’s natural
ability to recognize patterns in the data being studied. The more she explores the
more she discovers, but also the higher the risk of finding interesting results arising
out of coincidences, as, e.g., spurious relations between variables that have no con-
nection in the real world. Intuitively this corresponds to testing multiple hypothesis
without realizing it. This duality of EDA requires a thorough analysis of results and
highlights the need for statistically robust techniques that allow us to explore the
data in a responsible way. While EDA encompasses all techniques referring to data
exploration, Subgroup Discovery (SD) [63, 8] is the subfield concerned with discov-
ering interpretable descriptions of subsets of the data that stand out with respect to
a given target variable, i.e., subgroups. In this dissertation, we aim at improving the
discovery of subgroup lists, i.e., ordered sets of subsets, that describe different regions
of the data while being statistically robust at an individual level and as a whole.

Subgroup discovery (SD) can be seen as the exploratory counterpart to rule learning or

Chapter 1. Introduction 5

association rule mining, where the targets/consequent of the rules are fixed, and rules
are ranked according to quality measures combining subgroup size and deviation
of the target variable(s) with respect to the overall distribution in the data. In its
traditional form, subgroup discovery is also referred to as top-k subgroup mining [8],
which entails mining the k top-ranking subgroups according to a local quality measure
and a number k selected by the user. Since its conception, subgroup discovery has
been developed for various types of data and targets, e.g., nominal, numeric [45], and
multi-label [72] targets. SD has been applied in a wide range of different domains
[52, 8], such as identifying the properties of materials [43], unusual consumption
patterns in smart grids [60], identifying the characteristics of delayed flights [98],
and understanding the influence of pace in long-distance running [23].

Even though SD appeals to several domains, top-k mining traditionally suffers from
three main issues that make it impractical for many applications: 1) poor efficiency of
exhaustive search for more relevant quality measures [12]; 2) redundancy of mined
subgroups, i.e., the fact that subsets with the highest deviation according to a cer-
tain local quality measure tend to cover the same region of the dataset with slight
variations in their description of the subset [75]; 3) lack of generalization or statist-
ical robustness of mined subgroups [77]. In this dissertation, we focus on the last
two issues together: lowering redundancy by finding small lists of subgroups that de-
scribe the differences in the data well; and obtaining statistically robust subgroups.
First, we define what an optimal subgroup list is using the MDL principle. Second,
we propose a greedy algorithm that finds good subgroup lists using a local objective
that is equivalent to maximizing Bayesian one-sample proportions, multinomial or
t-test between each subgroup’s distribution and the dataset marginal distribution, for
binary, nominal or numeric data, respectively, plus a penalty for multiple hypothesis
testing.

In recent years both issues have been partially addressed, mostly independent of each
other; we next briefly discuss recent advances and limitations.

In terms of redundancy, the first main limitation of existing works is their focus on
one type of target variables, such as binary targets [14, 10], nominal targets [71], or
numeric targets [83], where only DSSD focuses on univariate and multivariate nom-
inal and numeric targets [75]. The second main limitation is the lack of an optimality
criterion for subgroup sets or lists, where the only exception is FSSD [10]. It is im-
portant to emphasize that some works aim to find sequential subgroups or subgroup
lists, while others aim to find unordered sets or subgroup sets. Subgroup lists are akin
to predictive rule lists [96] in the sense that each subgroup needs to be interpreted
sequentially and they are not allowed to overlap, while subgroup sets are allowed
to overlap. In this chapter, we focus solely on subgroup lists, and although previous
works often did not use this term, we retroactively rename those models that are in

6 1.3. Research question and contributions

fact subgroup lists.
In terms of statistical robustness, most existing approaches consider first mining the
top-k subgroups and then post-processing them in terms of a statistical test to find if
the discovered subgroups are statistically significant [30, 77].

Robust subgroup discovery. Informally the problem of robust subgroup discovery
is to define and find the globally optimal set or list (i.e., an ordered set) of non-
redundant subgroups that together explain the most relevant local deviations in the
data with respect to specified target variables. As finding the optimal set or list will
typically be practically infeasible, the secondary problem is to construct an algorithm
that efficiently mines “good” subgroup sets or lists from the data that retains as much
from the global formulation’s statistical properties as possible.

In this dissertation we restrict our focus to finding subgroup lists, because 1) they
were one of the first model classes proposed for subgroup set discovery [71]; 2) they
allow for an optimal formulation based on the MDL principle due to its property of
unambiguously partitioning the data into non-overlapping parts; and 3) finally, they
allow an ordered interpretation of the subgroups, i.e., from most to least relevant
discovered subgroup.

1.3 Research question and contributions

This dissertation attempts to answer one overarching research question:

How to learn robust and interpretable rule-based models from data for machine learning
and data mining, and define their optimality

In pursuit of valid answers to this question, this dissertation presents contributions
on five topics: 1) predictive rule lists; 2) subgroup lists; 3) MDL learning theory; and
4) the difference between predictive rules and subgroup discovery rules.

Our contributions on predictive rule lists and machine learning are the following:

1. Interpretable predictive rule lists using MDL (Chapter 3) – We define optimal
predictive rule lists for single- and multi-target classification and regression
using the MDL principle. For classification, we derive two optimal encodings:
the prequential plug-in; and the Normalized Maximum Likelihood (NML) (Sec-
tion 3.4.3). For regression we use a Bayesian encoding with non-informative
priors (Section 3.5.3).

Chapter 1. Introduction 7

2. CLASSY algorithm (Chapter 4) – We propose a heuristic algorithm for finding
good predictive rule list for multiclass classification. The algorithm combines
a frequent pattern mining algorithm to mine all the candidate rules with a
greedy search to sequentially add rules to a list. Technically, CLASSY only has
one hyperparameter, the candidate rules taken as input to find the rule list. It
is empirically shown that Classy outperforms RIPPER, C5.0, CART, and Scalable
Bayesian Rule Lists (SBRL) [125] when it comes to the combination of classific-
ation performance and interpretability.

Our contributions on subgroup lists and subgroup discovery are the following:

3. Subgroup list model class (Chapter 2) – We define the subgroup list model class
over a tabular dataset in general, providing a global probabilistic formulation
for the problem of sequential subgroup mining, and in particular for univariate
and multivariate, nominal and numeric targets.

4. Robust subgroup lists using MDL (Chapter 3) – We define optimal subgroup lists
using the MDL principle, where we resort to the optimal Normalized Maximum
Likelihood (NML) encoding for nominal targets (Section 3.4) and the Bayesian
encoding with non-informative priors for numeric targets (Section 3.5). Not-
ably, we show that this problem formalization is equivalent to the standard
definition of top-1 subgroup discovery with Weighted Kullback-Leibler (WKL)
divergence as quality measure for the case of a subgroup list with one subgroup
(Section 3.4.3 for nominal targets and Section 3.5.3 for numeric targets).

5. RSD algorithm (Chapter 5) – We propose the Robust Subgroup Discoverer (RSD)
algorithm, which combines beam search to find subgroups with greedy search
to iteratively add the best found subgroup to the subgroup list (Section 5.2). We
show that the greedy objective is equivalent to a one-sample Bayes proportions,
multinomial, or t-test (for binary, nominal or numeric targets, respectively) plus
a penalty to compensate for multiple hypothesis testing (Section 3.4.4 for binary
and nominal targets, Section 3.5.4 for numeric targets, and Section 5.2.3 for the
greedy objective of RSD).

The contributions on MDL learning theory are the following:

6. Prequential plug-in code for partition models – Derivation of the prequential plug-
in asymptotically optimal encoding, a refined MDL encoding, for model classes
that partition the data for nominal target variables—subgroup lists, rule lists,
trees, etc. (presentation in Section 3.4 and full derivation in Appendix B).

7. Normalized Maximum Likelihood for partition models – Derivation of the Normal-
ized Maximum Likelihood (NML) optimal encoding, a refined MDL encoding,

8 1.4. Outline of this dissertation

for model classes that partition the data for nominal target variables—subgroup
lists, rule lists, trees, etc. (presentation in Section 3.4 and full derivation in Ap-
pendix C).

8. Bayesian encoding of normal distributions for partition models – Derivation of
a Bayesian optimal encoding of normal distributions with non-informative pri-
ors for numeric targets (presentation in Section 3.5 and full derivation in Ap-
pendix D). It is shown that for large number of instances it converges to the BIC
(Appendix E). Similarly to the prequential and NML encodings, it can be used
by any model class that unambiguously partitions the data, such as subgroup
lists, rule lists, trees, etc.

9. Greedy MDL algorithms maximize local statistical test (Chapter 5) – We show that
the greedy gain commonly used in the MDL for pattern mining literature can
be interpreted as an MDL equivalent to a local Bayesian hypothesis test, a.k.a.
Bayesian factor, on the likelihood of the data being better fitted by the greedy
extended model versus the current model, plus a penalty for the extra model
complexity (Section 5.2.3).

Finally, our contribution on the difference between predictive rules and subgroup
discovery rules:

10. Subgroups discovery versus rule-based prediction – We demonstrate the differ-
ence between the formal objectives for subgroup discovery and predictive rule
models, such as classification rule lists, from the perspective of our MDL-based
approach (Section 3.7).

1.4 Outline of this dissertation

The structure of this dissertation is as follows. Chapter 2 presents the fundamental
problem definitions and mathematical notation necessary to understand later chapters.
It starts with a gentle introduction of association rules in rule-based classifiers, sub-
group discovery, and subgroup set discovery, posteriorly formalizing these tasks for
supervised data. Moreover, it presents the rule list model class and specializes this
generic model class to the predictive rule list in machine learning and the subgroup
list in subgroup discovery. Then, it shows how to empirically measure the quality of
classification models, subgroups, and subgroup sets.
Chapter 3 presents how to encode rules, predictive rule lists, and subgroup lists using
the MDL principle for univariate and multivariate nominal and numeric target vari-
ables. Then, it proceeds to prove the equivalence of MDL-based subgroup lists with

Chapter 1. Introduction 9

one subgroup and the standard definition of subgroup discovery—top-1 mining—with
the Weighted Kullback-Leibler (WKL) divergence as a quality measure. Finally, we use
our MDL formulation of predictive rule lists and subgroup lists to find the similarities
and differences between rule-based prediction and subgroup discovery.
Chapter 4 introduces CLASSY, a heuristic algorithm based on the MDL principle to find
good predictive rule lists for multiclass classification. Then, extensive empirical com-
parisons validate our proposed MDL formulation and algorithm in terms of classific-
ation performance, interpretability, overfitting, and runtime. They show that CLASSY

is competitive in classification performance against state-of-the-art algorithms that
produce rule-based models (or trees) while usually finding simpler models.
In Chapter 5, we propose the Robust Subgroup Discoverer (RSD) algorithm finds good
subgroup lists based on our MDL formulation. It combines beam search for candidate
generation with greedy search to add one subgroup at a time. Moreover, this greedy
gain equals an MDL equivalent of Bayesian testing. Then, our MDL formulation and
RSD show that they obtain high-quality subgroup lists on 54 datasets compared to
state-of-the-art algorithms. In the end, we conduct three case studies to show how
RSD works on real-world problems.
Finally, Chapter 6 presents the main conclusions of this dissertation and possible fu-
ture work directions.

1.5 Publications

The chapters of this thesis are based on the following publications:

• H. M. Proença and M. van Leeuwen. Interpretable multiclass classification by
mdl-based rule lists. Information Sciences, 512:1372–1393, 2020

• H. M. Proença, P. Grünwald, T. Bäck, and M. van Leeuwen. Discovering out-
standing subgroup lists for numeric targets using mdl. In Joint European Confer-
ence on Machine Learning and Knowledge Discovery in Databases, pages 19–35.
Springer, 2020

• H. M. Proença, T. Bäck, and M. van Leeuwen. Robust subgroup discovery. Data
Mining and Knowledge Discovery (preprint available in arXiv:2103.13686), sub-
mitted

Other publications

• H. M. Proença, R. Klijn, T. Bäck, and M. van Leeuwen. Identifying flight delay
patterns using diverse subgroup discovery. In 2018 IEEE SSCI, pages 60–67.
IEEE, 2018

2
Preliminaries

In this chapter predictive rule lists and subgroup lists are presented. To that end, we
give a gentle introduction to association rules, what constitutes a rule-based classifier
and subgroup discovery, and how to measure the quality of a rule-based model in
classification and subgroup discovery.

This chapter is divided as follows. First, in Section 2.1 we give a high-level intro-
duction of association rules, rule-based classifiers, subgroup discovery, and subgroup
set discovery. Next, in Section 2.2 the notation for supervised structured i.i.d. data
is presented together with a formal definition of prediction, subgroup discovery, and
subgroup set discovery tasks. Then, in Section 2.3 association rules and their charac-
teristics are introduced. After that, in Section 2.4 the rule list model class is defined
in general plus the specific case of the predictive rule lists and the subgroup list.
Then, in Sections 2.5, 2.6, and 2.7 performance measures for classification, quality
measures for subgroup discovery, and quality measures for subgroup set discovery are
introduced, respectively.

2.1 Introduction to rules

The main topics of this thesis, rule-based classification and subgroup discovery, are
two paradigms arising from related fields, machine learning and data mining, re-
spectively. Both topics share the fact that they are supervised tasks on structured data
that resort to association rules to construct their models. Thus, we will now inform-
ally introduce what each of these tasks encompasses, starting from what they have in
common, and finalizing with their differences.

12 2.1. Introduction to rules

Association rule. An association rule a 7→ b is an assertion of a possible relationship
between the antecedent a and consequent b, which can be read in the form of “If a
appears in the data then b usually also appears” with a certain level of confidence
[2]. A classic example from market basket analysis is that people who buy bread
and butter (antecedent), usually, also buy milk (consequent) [2]. In this case, the
association rule takes the form of: {bread = yes}&{butter = yes} 7→ milk = yes.
A probabilistic extension of these rules, deemed a probabilistic association rule [81],
associates a parametric probability distribution to the consequent, thus, instead of
having a crisp decision, it has a probability associated with each possible case:

a 7→ b ∼ Dist(Θ), (2.1)

where Θ are the parameters of the distribution Dist that describe the consequent.
In the case of the previous example, where the consequent is a binary variable, this
could take the form of: {bread = yes}&{butter = yes} 7→ milk ∼ Bernouilli(pyes =

0.60; pno = 0.40); where pyes is the probability of having bought milk, and pno =

1− pyes the probability of not having bought it. A rule is said to be active in a region
of the data D if for a data instance x ∈ D its antecedent is present, such as in our
example {bread = yes}&{butter = yes}.

Rule-based classifiers. Classification is the task of predicting an unseen outcome y
of a discrete target variable from an instance of explanatory variables x [36]. In order
to learn the relationship between the variables, a classification model is learned from
a supervised dataset D = {X, Y }, which is composed of paired examples (x, y). Note
that we only talk about rule-based classifiers and not regressors because, to the best
of our knowledge, there are no competitive rule-based models for regression.

Rule-based classifiers aggregate several rules together in order to perform classifica-
tion. Combining rules in different ways leads to different rule-based models, of which
two stand out [39]: 1) rule list or sequential activation [109, 85]—the activation of
the rules for prediction follows a pre-determined order of the form if rule 1 then
Dist(Θ1)... else if rule 2 then Dist(Θ2), finishing with a default else Dist(Θm) that
captures all the data not covered by any of the previous rules; 2) rule set or over-
lapping rules [21]—an unordered set of rules where several individual rules can be
activated at the same time, overlapping. The key difference between both models is
that rule lists are ordered and only one rule is active for one data sample x, while rule
sets are unordered and multiple rules can be active for one data sample x.
The objective of a rule-based classifier is to maximize a performance measure, thus
each association rule should contribute to that global goal, i.e., each rule should

Chapter 2. Preliminaries 13

take into account other rules to maximize the overall quality of the classifier. Look-
ing back at our example, we see that {bread = yes}&{butter = yes} 7→ milk ∼
Bernouilli(pyes = 0.60; pno = 0.40) does not seem particularly good for predic-
tion as it does not distinguish very well between both classes. On the other hand,
the rule {yoghurt = yes} 7→ milk ∼ Bernouilli(pyes = 0.90; pno = 0.10) seems
well suited for prediction. A note should be made in relation to decision lists, which
have the same format as rule lists, but instead of combining probabilistic association
rules, they are composed of decision rules, with a crisp decision as in our example
{bread = yes}&{butter = yes} 7→ milk = yes, and appeared first in the literature
[109].

Subgroup Discovery (SD). Subgroup discovery is the data mining task of finding
subgroups that stand out with respect to some given target variable(s). The definition
of standing out, also known as interestingness, is quantified by a quality measure,
which depends on the task at hand [123, 63]. In general, these measures quantify
quality by how different the target variable distribution of a subgroup is from what is
defined as ‘normal’ behavior in a dataset. In the case of structured data, a subgroup
generally takes the form of an association rule, and the ‘normal’ behavior is usually
measured by the average behavior of the target variable of that dataset [8]. Going
back to the market basket analysis example, let us consider a dataset made up of
the shopping baskets of different clients, and that has as target variable if a client
bought milk (or not). ‘Normal’ behavior can be given by the percentage of people that
buy milk over the whole dataset, and let us assume that this value is 90%. Thus, the
subgroup defined by {bread = yes}&{butter = yes} 7→ milk ∼ Bernouilli(pyes =

0.60; pno = 0.40) seems interesting, as compared with normal behavior, people that
buy bread and butter buy milk 33% times fewer times than an average client. This
is in clear contrast with rules for prediction, as subgroups that are interesting do not
have to divide well between classes: they need to stand out with respect to what is
‘normal’ behavior in the data. Sometimes, depending on the dataset and task at hand,
a good subgroup will also be a good predictive rule, but both tasks arise from differ-
ent goals and should thus not be confused. In its standard form, subgroup discovery
is called top-k mining, as the goal is to find the k top subgroups that maximize a user-
defined quality measure. As the quality measures only quantify the individual quality
of a subgroup, top-k mining is a local paradigm, as it is only concerned with the in-
dependent performance of the k subgroups on the respective data covered by each of
their descriptions. Top-k subgroup discovery usually finds subgroups that cover the
same region of the data, hence it returns redundant subgroups for many datasets. As
a solution to this, subgroup set discovery was proposed.

14 2.2. Supervised data

Subgroup Set Discovery (SSD). The task of finding a non-redundant set of sub-
groups that are individually and collectively interesting at the same time is called
Subgroup Set Discovery (SSD) [75]. Contrary to a predictive paradigm, the objective
is that the subgroups still abide by the standard subgroup discovery principle of locally
standing out with respect to the ‘normal’ behavior, while at the same time, globally de-
scribing different regions of the dataset. To extend subgroup discovery to its set form,
two main models exist: 1) subgroup lists or ordered sets [71]—a set of subgroups that
should be interpreted sequentially and where no subgroup is allowed to overlap in
the same region of data as another, take the form of if subgroup 1 then Dist(Θ1)...
else if subgroup 2 then Dist(Θ2), etc.; and 2) subgroup sets or overlapping sets [74]—
a set of subgroups where each subgroup can be interpreted individually and over-
lap is allowed according to a definition of overlap interaction. Both extensions have
their advantages and disadvantages: while subgroup lists are less interpretable, they
have the advantage of a clear definition of the relevance of each subgroup and which
subgroup explains each data point. On the other hand, subgroup sets allow for a
(semi)independent interpretation of the subgroups, but they require an extra defin-
ition that favors non-redundant sets together with a definition of the interaction of
subgroups in the region where they overlap, e.g., as a mixture model.

Rule-based classifiers versus Subgroup Set Discovery. As was shown throughout
this section, predictive rules and subgroups share a lot of the same characteristics.
Rule-based classifiers aggregate association rules to maximize a global objective of
a good overall classification, while subgroup sets balance both a local definition of
quality with respect to the ‘normal’ behavior of the dataset and a global objective
of covering different regions of the data. It is natural that for some datasets good
subgroups will be good predictive rules and vice versa, but this is not always the case
and it should be distinguished. Throughout this work, we will be referencing them
separately to emphasize the different paradigms: 1) predictive rule will refer to an
association rule as used in rule-based models for classification in machine learning;
2) subgroup to descriptive rules in subgroup discovery; and 3) association rule or just
rule to an association rule in general, i.e., when it refers to either a predictive rule or
a subgroup. All their idiosyncrasies may not be apparent yet, but as we progress we
will continue to emphasize their similarities and differences.

2.2 Supervised data

Consider a dataset D = (X,Y) = {(x1,y1), (x2,y2), ..., (xn,yn)} of n i.i.d. instances.
Each instance (xi,yi) is composed of a vector of explanatory variable values xi and a

Chapter 2. Preliminaries 15

vector of target variable values yi.
Each observed explanatory vector has m values x = [x1, ..., xm], one for each vari-
able X1, ..., Xm. The domain of a variable Xj , denoted Xj , can be one of two types:
nominal or numeric. Similarly, each observed target vector is composed of t values
y = [y1, ..., yt], one for each target variable Y1, ..., Yt, with associated domains Yj . The
target variables can be one of two types: nominal, or numeric. In the nominal case it
is Yj = {1, · · · , k}, with Yj the set of k classes/categories of variable Yj , and in the
numeric, the domain is Yj = R.
Note that we use subscripts on the dataset variables (D,X,Y, X, Y, x, y) to indicate
column subsets and overscripts to subset over rows. In the case of other notation, such
as number of elements n or statistics µ, σ we will not use the superscript as it can be
confused with the exponentiation of that value. Also, Xi (resp. Yi) refers to both the
properties of the ith explanatory (resp. target) variable and to all the values of this
variable for a specific column. When the dataset only contains one target variable Y

is substituted by Y .

Prediction In statistical learning, the task of prediction is to infer unseen values of
a target variable from a set of explanatory variables through the use of past evid-
ence that shows the relationship between target and explanatory variables [36].
Formally, this means that we want to find the best mapping g, from a space of
possible hypotheses G, between explanatory data X to target data Y (in the uni-
variate case and without loss of generality). This mapping can be summarized as
g : X1 × · · · × Xm → Y; and in the case of a probabilistic predictor, such as ours,
this mapping is just a conditional probability g(x) = Pr(y | x = x), and by abuse of
notation g(X) = {g(x1), · · · , g(xn)}. Assuming that we are dealing with probabilistic
mappings, we can now start making predictions ŷ for the target variable values for
each instance x, by returning the outcome with the largest probability

ŷ = arg max
y∈Y

Pr(y | x) (2.2)

The characteristics of a good mapping are: 1) capture the properties in X that allow
predicting Y ; and 2) generalize well on previously unseen dataDnew = {Xnew, Ynew}.
In order to choose the best possible mapping, we need to introduce a performance
measuremeas that empirically quantifies the quality of our mappings for a given data-
set, formally meas : Yn × Yn → R≥0. Thus the problem of finding the best mapping
g in a dataset D = {X, Y } reduces to:

g∗ = arg max
g∈G

meas(Y, g(X)), (2.3)

but then another, Dnew is required for evaluation, as this takes into account gener-
alization and avoids overfitting. Some examples of measures meas for classification

16 2.2. Supervised data

are the accuracy or the AUC, described in Section 2.5, or the Mean Squared Error for
regression.
Several variations exist, such as using only predictions ŷ instead of g(x) or structural
measures that add an extra term to meas to penalize for the structural complexity of
the mapping [119]. E.g., in the case of nested mappings such as a polynomial regres-
sion, the use of higher-order polynomials is “more complex” than lower-order ones,
as they have extra terms. The Minimum Description Length (MDL) principle used
throughout this dissertation, is a type of probabilistic structural error minimization
principle and this mapping g is called a model M or point hypothesis in it [47].

Subgroup discovery Subgroup discovery is the data mining task of discovering un-
kown patterns in the data that stand out with respect to a target variable [116]. In
mathematical terms the objective is to find a mapping between descriptions a of the
explanatory data X and the target variable Y (for the univariate case without loss of
generality) that stand out in relation to the ‘normal’ behavior of the target variable Y .
Formally, a description is a function a : X1×· · ·×Xm 7→ {false, true}. And in our spe-
cific case, a description a is a conjunction of conditions on X, each specifying a value
or interval on a variable. The domain of possible conditions depends on the type of
a variable: numeric variables support greater and less than {≥,≤}; nominal support
equal to {=}. E.g., from Figure 2.2, where for the Car import dataset, a description
can be “weight = heavy & consumption-city ≤ 8 km/L”, where the variable weight is
conditioned to one value (norminal variable) and consumption− city is conditioned
to one interval (numeric variable). As the dataset is made of pairs (xi, yi), for each
description a there is an associated subset of data Da = {Xa, Y a} with na = Da

instances, and an associated empirical parameter distribution of the target Y a given
by Θ̂a—where the parameters depend on the distribution selected by the user. Thus,
in the case of i.i.d. data, a subgroup is an association rule s : a 7→ y ∼ Dist(Θ̂a).
To quantify how interesting a subgroup s with description a is, we need to define a
quality measure q(na, Θ̂a, Θ̂d) that is a function of the subgroup empirical distribu-
tion Θ̂a and the dataset empirical marginal distribution Θ̂d—‘normal’ behavior of the
dataset.
Formally the best subgroup, or top-1 subgroup, is given by

s∗ = arg max
s=(a,Θ̂a)∈A

q(na, Θ̂
a, Θ̂d), (2.4)

where in the case of top-k subgroup discovery, we return the k top ranking sub-
groups that maximize q. An example of a quality measure for binary targets in the
Weighted Relative Accuracy (WRAcc) or the Weighted Kullback-Leibler (WKL) diver-
gence presented in Section 2.6. Contrary to prediction, SD does not aim at performing

Chapter 2. Preliminaries 17

well on unseen data, but on discovering interesting patterns in the seen data.

Subgroup set discovery The objective of subgroup set discovery (SSD) is to find a
set of subgroups S that are both (individually) high-quality and non-redundant, i.e.,
cover different regions of the data [75]. Thus, it uses a local idea of quality measure
from subgroup discovery plus a global concept of covering different regions of the
dataset. Given this vague trade-off, SSD objectives have only been defined heurist-
ically in different works, either by sequentially covering or by weighting instances
[71, 75].
In the sequential approach one iteratively finds subgroups by: 1) discovering the
top-1 subgroup according to quality measure as in Eq. (2.4); 2) removing the data
covered by that subgroup—or in some cases, only the data of a certain class in binary
SSD[71]—from the dataset, thus getting D¬a = D \ Da; and 3) repeating 1 and 2

until the desired number is reached or no more subgroups can be found. The weight-
ing approach follows the same iterative approach as the sequential one, but instead
of removing the whole data in step 2, it reweighs each instance if it was already
covered by subgroups selected in previous iterations. Formally, SSD can be defined as
a dependent system of equations:

s1 = arg max
s=(a,Θ̂a)∈A

q(na, Θ̂
a, Θ̂d),

s2 = arg max
s=(a,Θ̂a)∈A|(s1)

q̃(na, Θ̂
a, Θ̂d, s1),

...

sk = arg max
s=(a,Θ̂a)∈A|(s1,··· ,sk−1)

q̃(na, Θ̂
a, Θ̂d, s1, · · · , sk−1),

(2.5)

where A|(s1, · · · , sk−1) represents that the space of possible subgroups and their em-
pirical distributions depend on the subgroups found so far, q̃ means that the quality
measure can be slightly modified by a weighting, given previous selected subgroups.
As there are no SSD global quality measures, in Section 2.7 we describe what the
characteristics of a SSD quality measure Q(S, Y) over a whole dataset should be, and
in Section 3.6 we propose the Sum of Weighted Kullback-Leibler (SWKL) divergences
as an SSD measure for sequential subgroup sets—that could in the future be adapted
for non-sequential sets.

Tasks. Depending on the type (nominal or numeric) and number of targets (one or
multiple), and the task at hand—rule-based prediction or subgroup discovery—the
type of problem for each task can be divided into four categories.
First, for the case of rule-based prediction, it can be divided as: 1) classification:

18 2.3. Association rules, predictive rules and subgroups

univariate nominal target; 2) regression: univariate numeric target; 3) multi-label or
multi-target classification: multivariate binary or nominal targets, respectively; and 4)
multi-target regression: multivariate numeric targets.
Second, for the case of subgroup discovery the names are themselves self explanatory:
1) single-nominal; 2) single-numeric; 3) multi-nominal; and 4) multi-numeric.

2.3 Association rules, predictive rules and subgroups

Association rules are the shared building block of rule-based classification and sub-
group discovery. To distinguish the tasks, when we mention and association rule r,
we are talking about its general form and it can refer to both a predictive rule ρ and
a subgroup s.

An association rule r, henceforth, called rule, consists of a description (also intent)
that defines a cover (also extent), i.e., a subset of dataset D. Examples of association
rules are given in Figures 2.1 and 2.2

Pr(animaltype = · · · | a) in %

description of animal n Mammal Fish Invert. Bug Reptile Amph. Bird

backbone = no 18 0 0 56 44 0 0 0

Figure 2.1: Example of one rule from the Zoo dataset with coverage n and one nom-
inal target variable characterized by a categorical distribution with parameters pi for
each class in {Mammal; Fish; Invert.; Bug; Reptile; Amph.; Bird}.

price (K)

description of automobile specifications n µ σ

weight = heavy & consumption-city ≤ 8 km/L 11 35 8

Figure 2.2: Example of one rule from the Automobile import 1985 with a numeric
target variable characterized by a normal distribution with coverage n, mean µ, and
standard deviation σ.

Rule description: A description a is a Boolean function over all explanatory vari-
ables X. Formally, it is a function a : X1 × · · · × Xm 7→ {false, true}. In our case,
a description a is a conjunction of conditions on X, each specifying a specific value

Chapter 2. Preliminaries 19

or interval on a variable. The domain of possible conditions depends on the type of
a variable: numeric variables support greater and less than {≥,≤}; nominal support
equal to {=}. The size of a description a, denoted |a|, is the number of conditioned
variables it contains.

Example 1: In Figure 2.2, the rule description size is |a| = 2, with one condi-
tion on a nominal variable: {weigth = heavy}; and another on a numeric variable:
{consumption-city ≤ 8km/L}.

Rule cover: The cover is the bag of instances from D where the rule description holds
true. Formally, it is defined by:

Da = {(x,y) ∈ D | a v x} = {Xa
1 , · · · , Xa

m, Y
a
1 , · · · , Y at } = {Xa,Ya}, (2.6)

where we use a v x to denote a(x) = true. Further, let na = |Da| denote the coverage
of the subgroup, i.e., the number of instances it covers.
Example 2 (continuation): In Figure 2.2, the rule covers 11 instances in the dataset
which can be found by the instances in the data where its description is true, and
thus its coverage is 11.

2.3.1 Interpretation as probabilistic rule

As Da encompasses both the explanatory and target variables, the effect of a on
the target variables can be interpreted as a probabilistic rule. In this thesis, we will
assume that the target variables are independent as this simplifies the problem and is
a common approach in, e.g., multi-label classification [53]. Thus, the general form of
a rule is

a 7→ y1 ∼ Dist(Θ̂a
1), · · · , yt ∼ Dist(Θ̂a

t), (2.7)

where yj is a value of variable Yj , Dist is a probability distribution (defined later)
and Θ̂a

j is the shorthand for the maximum likelihood estimation of the parameters of
Dist over values Y aj , i.e., Θ̂a

j = Θ̂j(Y
a). Thus, yj ∼ Dist(Θ̂a

j) tells us that the values
of variable Yj are distributed according to a distribution Dist with parameters Θ̂a

j

estimated over the values Y aj . The vector of all parameter values of a rule is denoted
by Θa. In our case, Dist is a categorical or normal distribution for the nominal or
numeric target case, respectively. For numeric targets other distributions could have
been chosen, however, the normal distribution incorporates some of the most relevant
information of the data through the mean and variance of the data, it is well studied
for regression problems [36], and can be solved in a closed form from a Bayesian [58]
and MDL [48] perspective. For an analysis on the direct use of the numeric empirical
distribution in subgroup discovery please refer to Meeng et al. [89]. In the numeric

20 2.3. Association rules, predictive rules and subgroups

case, the normal distribution is represented as N (µ̂, σ̂), where µ̂ and σ̂ are the mean
and standard deviation of the distribution estimated from the data. In the nominal
case, the distribution is Cat(p̂1, · · · , p̂k), where k is the number of classes (or categor-
ies) of the corresponding variable and p̂c the estimated probability for class c.

The categorical distribution is a natural choice for describing the probabilities of
classes [81] and the normal distribution captures two properties of interest in nu-
meric variables, i.e., center and spread, while being robust to cases where the data
violates the normality assumption [48].
Example 3 (continuation): Revisiting the Automobile import example list in Figure 2.2,
the description and corresponding statistics are a = {weight = heavy & consumption-
city≤ 8 km/L } and Θ̂a = {µ̂ = 35; σ̂ = 8}, respectively, where the units are thousands
of dollars (K). This corresponds to the following normal probability distribution:

price (K) ∼ N (µ̂ = 35; σ̂ = 8)

Example 4 (continuation): In the case of the Zoo rule of Figure 2.1, the description is
a = {backbone = no}, and its corresponding statistics are Θ̂a = {p̂1 = 0; p̂2 = 0; p̂3 =

0.56; p̂4 = 0.44; p̂5 = 0; p̂6 = 0; p̂7 = 0}, where the class labels 1, ..., 7 correspond to
the animal types in the order of Figure 2.1. The target variable follows the following
categorical distribution:

animal type ∼ Cat(p̂1 = p̂2 = p̂5 = p̂6 = p̂7 = 0.00; p̂3 = 0.56; p̂4 = 0.44)

2.3.2 Maximum likelihood estimation

The most common way to estimate the parameters of a probability distribution from
a dataset is by using the Maximum Likelihood (ML) estimator [93]. In later chapters
we also use other estimators, but the ML is still an important building block of these
more complex methods.

As shown previously, each description a uniquely defines a subset Da given by its
cover Eq. (2.6). Next, we will show how to estimate the parameters for each type of
target variable.
In the nominal case, the parameters of the distribution Cat(Θa) are the probab-
ilities associated with each class c, i.e., Θa = {pc=1|a, · · · , pc=k|a}, for a domain
Y = {1, · · · , k}. Note that we use ·|a as a shorthand for conditional on a, as e.g.,
pc=1|a = Pr(c = 1 | a v x). Thus, for each class label c, we need to find its subset of

Chapter 2. Preliminaries 21

the data Dc|a, formally given by:

Dc|a = {(x, y) ∈ Da | y = c}. (2.8)

which allows us to compute the usage over each class nc|a = |Dc|a|. Now, we are in
a position to use the maximum likelihood estimator for the parameters Θ̂a of each
categorical distribution as:

p̂c|a =
nc|a

na
, (2.9)

where na is the total number of instances and nc|a is the number of instances of class
c in the dataset subset Da.
In the numeric case the parameters of the distribution N (Θa) are the mean and
standard deviation, i.e., Θa = {µ, σ}. They can be directly estimated from the target
data Y a:

µ̂a =
1

ni

∑
y∈Y a

y, (2.10)

σ̂2
a =

1

ni

∑
y∈Y a

(y − µ̂a)2, (2.11)

where σ̂2
a is the biased estimator such that the estimate times na equals the Residual

Sum of Squares, i.e., naσ̂2
a =

∑
y∈Y a(y − µ̂a)2 = RSSa.

2.4 Rule lists, predictive rule lists, and subgroup lists

Sequentially aggregating rules for prediction and subgroup discovery seamlessly leads
to predictive rule lists and subgroup lists, respectively. They have the same structural
format and share the same model class, dubbed rule list model class, which takes the
format of Figure 2.3, with the only difference being how the parameters of the last
rule, also known as default rule, are chosen.

The rule list is an ordered set of rules, and it contains two parts: 1) the part of the rule
list that contains the ω ordered rule descriptions {a1, · · · , aω}, which is denoted by R
for predictive rule lists and S for subgroup lists; and 2) the default rule rd. Together,
both parts form the whole model M . In a rule list, only one rule is activated for each
instance, hence each rule only activates in a unique part (subset) of the dataset. If
no rule gets activated, that instance will activate the default rule. As an example, to
characterize an instance x with a rule list, one starts by checking the first rule and
verify if a1 v x is true or false. In case it is true, x belongs to that rule. In case it is
false, we proceed to check the second rule and so forth, until finding one that returns

22 2.4. Rule lists, predictive rule lists, and subgroup lists

1: IF a1 v x THEN y1 ∼ Dist(Θ̂1
1) · · · yt ∼ Dist(Θ̂1

t)
...

ω: ELSE IF aω v x THEN y1 ∼ Dist(Θ̂ω
1) · · · yt ∼ Dist(Θ̂ω

t)

default: ELSE y1 ∼ Dist(Θ̂d
1) · · · yt ∼ Dist(Θ̂d

t)

Figure 2.3: Generic rule list model M with ω rules and t (number of target variables)
distributions per rule.

true. In case no rule is true, that instance activates the default rule.

Cover of a rule in a rule list. We observe that for any given rule list of the form of
Figure 2.3, any individual instance (xi,yi) can only be ‘covered’ by one rule. That is, the
cover of ai, denoted Da, depends on the order of the list and is given by the instances
where its description occurs minus those instances covered by previous descriptions:

Di = {Xi,Yi} = {(x,y) ∈ D | ai v x ∧

 ∧
∀i′<i

ai′ 6v x

}. (2.12)

Next, let ni = |Di| be the number of instances covered by the ith description (also
known as usage). In case an instance (xi,yi) is not covered by any rule then it is
‘covered’ by the default rule. The instances covered by the default rule Dd are the ones
not covered by any rule (hence the name default rule), formally defined as:

Dd = {Xd,Yd} = {(x,y) ∈ D | ∀ai∈Mai 6v x}. (2.13)

Maximum Likelihood estimator. Given the partition property of the rule lists, it is
straightforward to see that the ML estimators of Eq. (2.9), (2.10), and (2.11) still
hold if Da is replaced by Di.
What predictive rule lists and subgroup lists have in common is that they are
interpreted in order and that each predictive rule or subgroup distribution parameter,
with the exception of the default rule, is estimated in their respective subsets Di.
The difference between predictive rule lists and subgroup lists is how the default
rule distributions parameter are estimated! In the case of a predictive rule list, the
default rule is just an ordinary rule that characterizes its subset, thus its parameters
Θ̂d

1 · · · Θ̂d
t are estimated in that subset. In the case of a subgroup list, the default rule

is fixed to the marginal distribution of the target and it is constant for a dataset.
If the mean and standard deviation of a numeric target in a dataset are 18 and 13,
respectively, the subgroup list default rule will be fixed at those values, independently

Chapter 2. Preliminaries 23

of the (number of) subgroups in the list. This may seem like a subtle difference, but
it represents a radical difference in what defines an optimal predictive rule list or
subgroup list.
The intuition is the following: in a predictive rule list, the goal is to predict as best as
possible an unseen data point, thus each rule should represent homogeneous subsets
of the data, and the way the default rule predicts best is if its distribution represents
well its subset of the data. In a subgroup list, the goal is to find subsets of the data
that have different distributions than the marginal distribution of the dataset, and the
default rule covers and represents well all data that follows the marginal distribution.
This, in turn, incentivizes the optimal subgroup list to have subgroups that follow
distributions different than the default rule distribution, as instances well represented
by the default will not be covered by subgroups. Structurally both models look very
similar, but by having different definitions of optimality, each model type will favor
different types of association rules.
As an example, one can look at Figures 2.4a and 2.4b. Given that the dataset has
few distinguishing variables and few samples both predictive rules and subgroups
are mostly the same, as good predictive rules are also good subgroups in this case.
Nonetheless, one can see that the default rules are different. In the predictive rule
list, the default rule is clearly predictive, while in the subgroup list it is the original
distribution of the dataset.

2.5 Classification performance measures

Classification is a global predictive paradigm, thus its measures quantify the quality
of a model over the whole dataset [36]. As classification is expected to generalize to
unseen points, the quality of a classifier should be measured in data that is different
than the one used for training and choosing the classifier. In order to achieve this and
have some statistical guarantees of the generalization, each dataset is usually divided
into different parts, using some of its parts to train and the rest to test. The most
well-known of these techniques is called k-fold cross-validation, where one randomly
divides the data into k (approximately) equal parts. Then, one uses k−1 parts to train
the model, and the 1 part left to test the performance of that trained model, repeating
the process k times, until all data was used to test. In the end, the performance over
k folds is averaged out.
Classification measures can broadly be divided into two types: 1) aggregators of clas-
sifier decisions, such as accuracy, precision, or recall; 2) measures of how a classi-
fier discriminates between classes, taking into account the confidence with which it
classifies different classes, such as Area Under the receiver operator Curve (AUC) or

24 2.5. Classification performance measures

Pr(animaltype = · · · | r) in %

ρ description nρ Mammal Fish Invert. Bug Reptile Amph. Bird

1 backbone = no 18 0 0 56 44 0 0 0

2 breathes = no 14 0 93 0 0 7 0 0

3 feathers = yes 20 0 0 0 0 0 0 100

4 milk = no 8 0 0 0 0 50 50 0

default rule 41∗ 100 0 0 0 0 0 0

(a) Predictive rule list for zoo dataset. Default rule with distribution estimated from its subset.

Pr(animaltype = · · · | s) in %

s description ns Mammal Fish Invert. Bug Reptile Amph. Bird

1 backbone = no 18 0 0 56 44 0 0 0

2 breathes = no 14 0 93 0 0 7 0 0

3 feathers = yes 20 0 0 0 0 0 0 100

4 milk = no 8 0 0 0 0 50 50 0

5 feathers = no 41 100 0 0 0 0 0 0

dataset distribution 0∗ 41 13 10 8 5 4 2

(b) Subgroup list for zoo dataset. Dataset rule with distribution equal to the marginal distri-
bution of the dataset.

Figure 2.4: Illustrative example of a predictive rule list and subgroup list with the Zoo
dataset obtained with our method. Zoo contains one nominal target variable with 7

classes, 101 instances, and 15 binary and 1 numeric variables. ni refers to the num-
ber of instances covered by ith predictive rule or subgroup defined by ‘description’.
Pr(animaltype = ∗ | r) denotes the estimated probability (in %) of each class label
occurring within the subgroup. Zoo is a highly structured dataset, thus both rule list
and subgroup list found mostly the same descriptions, as in these case good subgroups
are also good predictive rules. However, it is important to check that the ‘default rules’
are indeed different and thus incite the method to find different types of rules. ∗ con-
cerns instances not covered by any of the five subgroups. For illustrative purposes the
probabilities displayed correspond to the empirical probabilities in the data, not to
the probabilities as would be obtained using the appropriate estimators.

Chapter 2. Preliminaries 25

likelihood. In this thesis, we will focus on accuracy, from the first group, as it gives
an overall idea of how the classifier takes decisions and AUC from the second group.
It should be noted that likelihood is more related to the MDL theory we use, but its
interpretation is not as easy, and so it will not be used for ranking classifiers.

The building blocks for describing the measures are the terms defined by the inter-
section of the true class label and the predicted class label. We will start with the
binary setting, when just two classes exist, the positive class, also known as the class
of interest, and the negative class. With two classes, there are four possible character-
izations of decisions based on which class it is and if it is correctly predicted by the
classifier or not:

• True Positives (TP) - Number of instances (correctly) predicted as positive that
are positive.

• True Negatives (TN) - Number of instances (correctly) predicted as negative that
are negative.

• False Positives (FP) - Number of instances (incorrectly) predicted as positive that
are negative.

• False Negatives (FN) - Number of instances (incorrectly) predicted as negative
that are positive.

In the multiclass scenario, we can define all these terms per class c, where the pos-
itive class represents the class of interest c and the negative class, either represents
all the other classes in a one-versus-all or another class in a one-versus-one setting. In
one-versus-all, the performance of each class is measured by creating two classes, pos-
itive class (class of interest), and negative class, where the negative class is all classes
except the positive one. In the second case, one-versus-one requires comparing each
class against each class. In this work, we will focus on one-versus-all as it is the most
common and simpler to understand [106]. Thus, for class c we can define True Posit-
ive of c (TPc), True Negative of c (TNc), False Positives of c (FPc), and False Negatives
of c (FNc).

Accuracy. Given the previous definitions, Accuracy can be immediately defined as the
ratio of correctly identified points to all points, formally:

Accuracy =

∑
c∈Y TPc∑

c∈Y TPc + FNc
, (2.14)

where for the binary case we have TP+TN in the numerator and TP+TN+FP+FN

in the denominator. Even though accuracy gives us an idea of how the classifier makes

26 2.5. Classification performance measures

predictions on the data, it has one main problem: if the original data is imbalanced it
can give an erroneous idea of the quality of the classifier. As an example, if the target
class is binary, and the majority class is made of 90% of the points, it is straightforward
to see that an accuracy of 90% just requires us to choose all the points as the majority
class, and that is not a very interesting classifier. In order to correct this, balanced
accuracy was introduced [17].

Balanced Accuracy. Contrary to accuracy, balanced accuracy takes into account the
classification of each class separately, by giving the same importance to each class of
the positive correctly predicted ratio, True Positive Rate (TPR), or recall. Formally, it
is given by:

bAcc =
1

|Y|
∑
c∈Y

TPc
TPc + FNc

(2.15)

Area under the ROC Curve (AUC). The area under the receiver operator curve,
which is only properly defined for binary problems, is given by the two-dimensional
plot of True Positive Rate (TPR) against the False Positive Rate (FPR), as one varies
the threshold T of classification. The FPR is just FP/(FN + TP), and the threshold
is a value above which a point is classified as belonging to the positive class, i.e., x

is classified as positive c = 1 if Pr(1 | x) > T . AUC is not restricted to probabilistic
classifiers but for ease of presentation we only consider these. Formally, the AUC is
the area under the curve of TPR and FPR as a function of the threshold, which is given
by the integral:

AUC =

∫ 1

0

TPR(T)FPR(T) dT = Pr(xpos. > xneg.), (2.16)

where T ∈ [0, 1] as we only consider probabilistic classifiers and Pr(x1 > x0) is the
probability that a randomly selected positive class example will rank higher than a
randomly selected negative class example in terms of [33]. An easier way to interpret
the AUC is through the Wilcoxon-Mann-Whitney statistic [20], an unbiased estimator
given by:

AUC =

∑
x0∈D0

∑
x1∈D1

1[Pr(1 | x0) < Pr(1 | x1)]

|D0| · |D1|
, (2.17)

where D0 and D1 are the negative and positive labeled examples in D, respectively,
and 1 is the indicator function that is 1 if Pr(1 | x0) < Pr(1 | x1) and zero other-
wise. Contrary to accuracy, and similarly to balanced accuracy, AUC gives the same
importance to both classes. Nonetheless, in its current format, AUC is not suited for
multiclass.

Chapter 2. Preliminaries 27

Multiclass AUC. To extend binary AUC to multiclass two things have to be taken
into account: how to compare different classes, and how to average performance per
class. To compare different classes, the two most common approaches are one-versus-
all and one-versus-one. As mentioned before, in this work, we will focus on one-versus-
all. Regarding how to average the performance per class, three methods exist: micro
average; macro average; and weighted average. Micro average takes into account each
example, and in the case of one-versus-all transforms the dataset into a binary prob-
lem, where 1 is the positive class of interest, and 0 otherwise, and computes the AUC
for the whole data. Macro average computes one AUC per class by, for each class,
transforming the dataset into a positive class versus negative class (all other classes),
and then computing the average of all AUCs. Weighted average computes one AUC per
class like the macro average, but then averages all AUCs weighted with the percent-
age of class examples in the data. For macro and weighted AUC (easier to present),
the formulas are:

AUCmacro =
1

|Y|
∑
c∈Y

AUC(c), (2.18)

and

AUCweighted =
∑
c∈Y

AUC(c)
|Dc|
|D|

, (2.19)

where AUC(c) is the one-versus-all AUC for class label c and |D
c|
|D| is the frequency of

that same class label.

2.6 Subgroup discovery measures

As shown before, subgroup discovery can broadly be divided into two categories: its
classic form, also known as top-k mining; and Subgroup Set Discovery (SSD). In the
first, only the individual quality of a subgroup is measured, hence quality is quantified
independently and locally for each subgroup. In the second, SSD takes into account
the local quality of individual subgroups while also taking into a account how well
they cover the whole dataset.
Contrary to classification and prediction in general, the goal of subgroup discovery is
to describe the dataset well and not to measure the prediction quality on unseen data
points. Thus, the quality of the subgroups or subgroup sets is traditionally measured in
the dataset where the model is trained. We will first introduce the quality measures for
top-k subgroup discovery, and then in Section 2.7 proceed to generalize for subgroup
sets.

28 2.6. Subgroup discovery measures

2.6.1 Top-k quality measures

Top-k stands for finding the k subgroups that maximize a certain quality measure
[8]. To assess the quality (or interestingness) of a subgroup description a, a measure
that scores subsets Da needs to be chosen. The measures used vary depending on
the target and task, but in general they have two components: 1) representativeness
of the subgroup in the data, based on coverage na = |Da|; and 2) a function of
the difference between statistics of the empirical target distribution of the pattern,
Θ̂a = Θ̂(Ya), and the overall empirical target distribution of the dataset, Θ̂d = Θ̂(Y).
The latter corresponds to the statistics estimated over the whole data, e.g., in the case
of the Automobile import subgroup list of Figure 3.3 it is Θ̂d = {µ̂ = 13; σ̂ = 8} and it
is estimated over all 197 instances of the dataset.
The general form of a quality measure to be maximized is

q(a) = (na)αf(Θ̂a, Θ̂d), α ∈ [0, 1], (2.20)

where α allows to control the trade-off between coverage and the difference of the
distributions, and f(Θ̂a, Θ̂d) is a function that measures how different the subgroup
and dataset distributions are. As an example, the most commonly adopted quality
measure for single-numeric targets is Weighted Relative Accuracy (WRAcc)[70], with
α = 1 and f(Θ̂a, Θ̂d) = µ̂a − µ̂d (the difference between subgroup and dataset aver-
ages).

2.6.2 Weighted Kullback-Leibler divergence

Another commonly adopted measure is the Weighted-Kullback Leibler divergence
(WKL) [74]. This is also the measure that we consider throughout this dissertation
because of its: 1) flexibility in terms of (number and types of) supported target vari-
ables; and 2) relationship to the MDL principle (see Chapter 3).
WKL is defined as the Kullback-Leibler (KL) divergence [66] between a subgroup’s
and dataset target distribution KL(Θ̂a; Θ̂d) linearly weighted by its coverage. Revis-
iting Eq. (2.20) this corresponds to f(.) = KL(.) and α = 1. The definition of WKL
for a univariate target variable Y is given by:

WKL(Θ̂a; Θ̂d) = naKL(Θ̂a; Θ̂d), (2.21)

where KL(Θ̂a; Θ̂d) is the Kullback-Leibler divergence between subgroup and dataset
for target Y . The KL divergence in Eq. (2.21) depends on the probabilistic model
chosen to describe the target variables. In its general form the KL divergence can be
defined as

KL(Θ̂a
j ; Θ̂d

j) =
∑
y∈Y a

Pr(y | Θ̂a
j) log

Pr(y | Θ̂a
j)

Pr(y | Θ̂d
j)

 , (2.22)

Chapter 2. Preliminaries 29

where the logarithm is to the base two (like all logarithms used in this thesis). Thus
the choice of the distribution used to describe the target is of great importance and
should reflect what the user deems interesting. Now, depending of the type of target
we will see show how to computeWKL(Θ̂a; Θ̂d). It is easy to see that for multivariate
targets we either use a multivariate distribution, e.g., a multivariate normal distribu-
tion, or assume that they are independent target variables, where the total WKL turns
out to be just the sum the WKL for each target variable.

We will now provide the definitions of WKL for univariate categorical and normal
distributions.

Weighted Kullback-Leibler for categorical distributions. In the case of a univariate
nominal target Y , the distribution can be uniquely described by a categorical distribu-
tion with the probability of each category Θ̂a = {p̂1|a, ..., p̂k|a}, so that theKL(Θ̂a; Θ̂d)

of Eq. (2.21) takes the form of

KLCat(Θ̂
a; Θ̂d) =

∑
c∈Y

p̂c|a log

(
p̂c|a

p̂c

)
, (2.23)

where p̂c|a = Pr(c | a) is the maximum likelihood estimate of the conditional probab-
ility of the target c given the subgroup a, and p̂c is the marginal probability for that
category.

Weighted Kullback-Leibler for normal distributions. In the case of a univariate
numeric target Y , many distributions could be used for modelling. We resort to the
normal distribution for its robustness and analytical properties, as mentioned before.
Nonetheless, still two possibilities remain: a location distribution Θ̂a = {µa} that
only accounts for the mean, or a ‘complete’ normal distribution Θ̂a = {µa, σa} that
accounts for the mean and the variance. With the location distribution KL(Θ̂a; Θ̂d)

equals1:

KLµ(s) =
(µ̂d − µ̂a)2

σ̂d
, (2.24)

while with the normal distribution one obtains:

KLµ,σ(s) =

[
log

σ̂d
σ̂a

+
σ̂2
a + (µ̂a − µ̂d)2

2σ̂2
d

log e− log e

2

]
. (2.25)

Note that since σ̂d is a constant for each dataset, there is a strong resemblance
between WKLµ(s) and WRAcc, where the only difference is the square of the dif-
ference of the means. Also notice that WKLµ,σ directly takes into account the vari-
ance of a subgroup and penalizes for a larger variance, while WKLµ(s) (and also

1The derivations of these formulas can be found in Appendix A.

30 2.7. Subgroup set discovery measures

WRAcc) does not take into account the variance, and thus fail to give importance
to the spread of subgroup values. This is a key point as this makes a quality measure
like WKLµ,σ(s) dispersion-aware, while measures like WKLµ(s) and WRAcc are not
[12].

2.7 Subgroup set discovery measures

Subgroup set discovery [75] is the task of finding a set of high-quality, non-redundant
subgroups that together describe all substantial deviations in the target distribution.
That is, given a quality function Q for subgroup sets and the set of all possible
subgroup sets S, the task is to find that subgroup set S∗ = {s1, . . . , sk} given by
S∗ = arg maxS∈S Q(S,Y). Note that Q should not only take into account the in-
dividual quality of subgroups q(a), but also the overlap of their coverages Da and
quantify the contribution of each instance only once, as opposed to top-k mining
where only their individual qualities are taken into account, and thus there is no
global definition of the quality of a set.
Ideally, a quality measure for subgroup sets Q should: 1) be global, i.e., for a given
dataset it should be possible to compare subgroup set qualities regardless of subgroup
set size or coverage; 2) maximize the individual qualities of the subgroups; and 3)
minimize redundancy of the subgroup set, i.e., the subgroups covers should overlap as
little as possible while ensuring the previous point.
Subgroup sets quality has mostly only been defined heuristically, by iteratively finding
one subgroup at the time and after each discovery removing/weighting the instances
covered by these [71, 75].

Nonetheless, there have been attempts to formally define the quality of a subgroup
set, although, they are usually not universal, i.e., independent of the number of sub-
groups, and usually rely on some heuristic definitions. For example, in Knobbe and
Ho [64], the authors propose to first mine the top-k patterns with k very large and
then filter out a subset k′ according to some measure that takes into account overlap
and individual quality. This is an effective approach to find a non-redundant set, but
by using top-k in the first step and fixing k′, they are first, biasing the search to a
certain region of the data that is highly redundant, and second, defining optimality
dependent on k′. In van Leeuwen and Ukkonen [76], the authors avoid defining one
measure, by treating the problem of finding a diverse set as a multi-objective, and
thus using two measures instead of one, one for quality and another for diversity of
subgroup set of size k. In the case of Belfodil et al. [10], the authors define a sub-
group set as a disjunction of subgroups and based on that, propose a global measure

Chapter 2. Preliminaries 31

for this type of set. However, this subgroup set definition does not match with pre-
vious works, as a disjunction of subgroups is just a subgroup that uses both logical
conjunctions and disjunctions to form a description. Thus, each set describes only the
global behaviour of this definition of subgroup.

Based on this limitation, in Section 3.6 we propose a new subgroup set measure called
the Sum of Weighted Kullback-Leibler (SWKL) divergences that is straightforward to
compute for a subgroup list. To extend it to subgroup sets, however, it would re-
quire defining the overlap of subgroups distributions in a probabilistic format, such
as through a mixture model.

3
MDL for rule lists

In this chapter1 we formalize the task of finding predictive rule lists and subgroup lists
as a model selection problem using the Minimum Description Length (MDL) principle
[107, 48, 47].

In the previous chapter, we defined the rule list model, which we recall here in Fig-
ure 3.1. Now, the remaining question is how to select adequate models. For that, we
resort to the MDL principle, which can be paraphrased as “induction by compression”
and roughly states that the best model is the one that best compresses the data. The
idea of compression can seem unintuitive at first. Still, one should notice that it is
intimately connected to the concept of probability, i.e., the model that has the highest
probability given the data is the same that maximizes compression. This idea was
first formally stated by Shannon [114], which tells us that the optimal length of the
encoding for an event A—smaller length corresponds to higher compression—equals
the negative logarithm of the probability of that event, thus

L(A) = − log Pr(A), (3.1)

where L(A) is the length of the encoding for the event. To be objective, the MDL
principle attempts to make the minimum number of assumptions about the model
class. At this point, we should recall that the models we are trying to select from the
data are rule lists and that, depending on the type of task, we use predictive rule lists
and subgroup lists for machine learning or data mining respectively. Both models have
the same model structure (that of Figure 3.1) and only differ in how the parameters
of the default rule are estimated.

1Parts of this chapter are based on Proença and van Leeuwen [96], Proença et al. [99, 100]

34

In the case of a subgroup list, the default rule is fixed to the marginal distribution of
each target, making its parameters known and fixed for a certain dataset [99, 100].
In the case of a predictive rule list, however, the last rule is ‘free’ in the sense that it
depends on the estimate of its subset Yd [96].

1: IF a1 v x THEN y1 ∼ Dist(Θ̂1
1) · · · yt ∼ Dist(Θ̂1

t)
...

ω: ELSE IF aω v x THEN y1 ∼ Dist(Θ̂ω
1) · · · yt ∼ Dist(Θ̂ω

t)

default: ELSE y1 ∼ Dist(Θ̂d
1) · · · yt ∼ Dist(Θ̂d

t)

Figure 3.1: Generic rule list model M with ω rules and t (number of target variables)
distributions per rule.

This may seem like a subtle difference, but for subgroup lists, it allows to find sub-
groups that always differentiate themselves from the dataset marginal distribution.
In contrast, for predictive rule lists, it will enable finding predictive rules that max-
imize predictive performance. A theoretical proof of their difference, from an MDL
perspective, is given in Chapter 3.7.

Nonetheless, all the data encodings developed in this chapter can be used for both
predictive rule lists and subgroup lists. In the case of predictive rule lists, the data
encodings were only empirically tested in the classification setting. In contrast, sub-
group lists were tested for all the settings, i.e., univariate and multivariate nominal
and numeric targets. To not burden the reader, we here present two simple examples
of subgroup lists in Figures 3.2 and 3.3, which will be used throughout this chapter
to exemplify the MDL encodings.

Structure of the chapter. This chapter is organized as follows. First, in Section 3.1 the
MDL principle for supervised datasets is introduced. Next, in Section 3.2 the encoding
of the model structure is shown. Then, in Section 3.3 the high-level encoding of the
data given the model is presented. After that, the specific encodings of the data given
a model for categorical and normal distributions are given in Sections 3.4 and 3.5,
respectively. Then, in Section 3.6 a new subgroup set discovery measure is presented.
Finally, in Chapter 3.7 the theoretical difference between rule lists and subgroup lists
is studied through the MDL lens.

Chapter 3. MDL for rule lists 35

Pr(animaltype = · · · | s) in %

s description ns Mammal Fish Invert. Bug Reptile Amph. Bird

1 backbone = no 18 0 0 56 44 0 0 0

2 breathes = no 14 0 93 0 0 7 0 0

3 feathers = yes 20 0 0 0 0 0 0 100

4 milk = no 8 0 0 0 0 50 50 0

5 feathers = no 41 100 0 0 0 0 0 0

dataset distribution 0∗ 41 13 10 8 5 4 2

Figure 3.2: Zoo dataset subgroup list obtained by RSD algorithm (presented in Chapter 5).
Zoo contains one nominal target variable with 7 classes, 101 instances, and 15 binary and
1 numeric variables. ns refers to the number of instances covered by subgroup ‘s’ defined
by ‘description’. Pr(animaltype = ∗ | s) denotes the estimated probability (in %) of each
class label occurring within the subgroup. The bottom row shows the marginal probability
distribution of the dataset. ∗ concerns instances not covered by any of the five subgroups. For
illustrative purposes the probabilities displayed correspond to the empirical probabilities in the
data, not to the probabilities as would be obtained using the appropriate estimator.

price (K)

s description of automobile specifications ns µ̂ σ̂

1 weight = heavy & consumption-city ≤ 8 km/L 11 35 8

2 fuel-type = gas & consumption-city ≥ 13 km/L 45 7 1

3 weight = light & wheel-base = low 35 9 1

4 length = medium & 13 ≤ consumption-city ≤ 15 km/L 27 10 2

5 peak-rpm = medium 49 16 3

6 engine-size = medium 12 26 7

dataset overall distribution 18∗ 13 8

Figure 3.3: Automobile import 1985 subgroup list obtained with RSD algorithm (presented in
Chapter 5). The dataset contains price as numeric target variable, 197 examples, and 17 vari-
ables. The dataset was modified, some variables removed and others discretized, for ease of
presentation. ns refers to the number of instances covered by subgroup ‘s’ defined by ‘descrip-
tion’, µ̂ and σ̂ its estimated mean and standard deviation for the target variable in thousands
of dollars (K). ∗ concerns instances not covered by any of the five subgroups.

36 3.1. The Minimum Description Length (MDL) principle

3.1 The Minimum Description Length (MDL) principle

As we are interested in finding compact yet good models that are statistically robust,
we resort to the Minimum Description Length (MDL) [107, 48] principle. The prob-
lem of selecting a concrete model from a large space of possible models is a point
hypothesis selection problem, for which we should use a two-part code [48].
In contrast to existing pattern-based modeling approaches (e.g., [120, 78]), we deal
with a supervised setting in which the goal is to learn a mapping from instances to
target variables. This implies that we are not looking for structure within instance data
X, but for structure in X that helps to explain (subgroup lists) or predict (predictive
rule lists) Y.
That is, to induce a mapping from instances to target variables, we should consider
the instance data X to be given as ‘input’ to the model and only encode the target
variables Y. Clearly, this corresponds to the rule lists that we introduced in the pre-
vious chapter. Then, given the complete space of models M, uniquely specified by
all ordered sets of patterns over X , the optimal model is the model M ∈ M that
minimizes a two-part code [48], i.e.,

M∗ = arg min
M∈M

L(D,M) = arg min
M∈M

[
L(Y | X,M) + L(M)

]
, (3.2)

where L(Y | X,M) is the encoded length, in bits2, of target variables data Y given
explanatory data X and model M , L(M) is the encoded length, in bits, of the model,
and L(D,M) is the total encoded length and the sum of both terms. Note that this
definition holds up for different models, such as rule list RL or subgroup list SL. Intu-
itively, the best model M∗ is the model that results in the best trade-off between how
well the model compresses the target data and the complexity of that model—thus
minimizing redundancy and automatically selecting the best list size. This formula-
tion is similar to that previously used for two-view association discovery [73].

3.2 Model encoding

The next step is to define the two length functions; we start with L(M). Following
the MDL principle [48], we need to ensure that: 1) all models in the model class, i.e.,
all rule lists for a given dataset, can be distinguished; and 2) larger code lengths are
assigned to more complex models. To accomplish the former, we encode all elements
of a model that can change, while for the latter, we resort to two different codes: when
a larger value represents a larger complexity we use the universal code for integers

2To obtain code lengths in bits, all logarithms in this paper are to the base 2.

Chapter 3. MDL for rule lists 37

[108], denoted3 LN; and when we have no prior knowledge but need to encode an
element from a set, we choose the uniform code. Note that as predictive rule lists and
subgroup lists have the same structure, their model can be defined in the same way,
as given all the rules in M , the default rule subset is completely defined.
Specifically, the encoded length of a model M over variables in X is given by

L(M) = LN(|M |) +
∑
ai∈M

LN(|ai|) + log

(
m

|ai|

)
+
∑
v∈ai

L(v)

 , (3.3)

where we first encode the number of antecedents |M |, which can symbolize predictive
rules |R| or subgroups |S|, using the universal code for integers, and then encode each
rule description individually. For each description, first, the number |ai| of variables
used is encoded, then the set of variables using a uniform code over the set of all
possible combinations of |ai| from all explanatory variables, and finally the specific
condition for a given variable. As we allow variables of two types, the latter is further
specified by

L(v) =

{
log |Xv| if v is nominal

LN|2(nop) + logN(nop, ncut) if v is numeric
(3.4)

where the code for each variable type assigns code lengths proportional to the num-
ber of possible parts the variable’s domain can partition the dataset. Note that this
seems justified, as having more parts implies more potential spurious associations
with the target that we would like to avoid. For nominal variables, this is given by the
size of the domain, i.e., the number of categories in a nominal variable. For numeric
variables, it equals the number of operators used nop|4 plus the possible number of
outcomes N(nop, ncut) given the operators and ncut cut points. The number of oper-
ators for numeric variables can be one or two, as there can be conditions with one
(e.g., x ≤ 2) or two operators (e.g., 1 ≤ x ≤ 2), which is a function of the number
of possible subsets generated by ncut cut points. Note that we here assume that equal
frequency binning is used, which means that knowing X and ncut is sufficient to de-
termine the cut points.

Example 5 (continuation): Let us assume that the subgroup list of the Automobile
example of Figure 3.3 is composed of only the first subgroup. In that case the rule list
only has one subgroup with description: {weight = heavy & consumption-city ≤ 8

3LN(i) = log k0 + log∗ i, where log∗ i = log i+ log log i+ . . . and k0 ≈ 2.865064.
4Note that we use LN|2, which is how we denote the universal code for integers with codes restricted

to n = 1 or 2. This can be obtained by applying the maximum entropy principle to LN when it is known
that it cannot take values of n > 2.

38 3.3. Data encoding

km/L }. Taking into account that the dataset has 17 variables, |Xweight| = 3 and only
3 cut points were used for numeric attributes, the model length is given by:

L(M) = LN(1) + LN(2) + log

(
17

2

)
+ log |Xweight|+

[
LN|2(1) + log 2ncut

]
= 1.52 + 2.52 + 7.09 + 1.59 + 0.77 + 2.59

= 16.08 bits

It is important to note that the length of the model can (and should) be a real number,
as we are only concerned with the idea of compression, not with materialising and
transmitting the actually encoded data [48].

3.3 Data encoding

The remaining length function is that of the target data given the explanatory data
and model, L(Y | X,M). In this section, we show how to encode the target data Y

by dividing it into smaller subsets that can be encoded individually and then summed
together, and why there are different types of data encoding for each of the subsets.
The specifics of encoding nominal and numeric targets are described in Sections 3.4
and 3.5, respectively.

Cover of a rule in a rule list. Let us recall from Chapter 2.4 that for any given
rule list of the form of Figure 3.1, any individual instance (x,y) can only be ‘covered’
by one rule or subgroup. That is, the cover of a description in a list ai, denoted Di,
depends on the order of the list and is given by the instances where its description
occurs minus those instances covered by previous descriptions, i.e., aj ,∀j<i.
In case an instance (x,y) is not covered by any pattern a ∈ M then it is ‘covered’ by
the default rule. The number of instances covered by the default rule Dd are the ones
not covered by any description (hence the name default rule). The instances covered
by a description, also called usage, are denoted by ni = |Di|, and those covered by
the default rule, nd = |Dd|
As every description defines an individual subset, one can estimate the parameters of
its target variable distributions using the maximum likelihood estimator described in
Section 2.3.2.
Note that this shows us that a rule or subgroup is fully defined by its description ai in
a dataset D, and we will interchangeably refer to rules by their descriptions and to its
elements (statistics, parameters, distributions, etc.) by its index i when obvious from
context.

Chapter 3. MDL for rule lists 39

As the default rule is the only difference between a rule list and a subgroup list, it is
also the difference in their encoding. As a rule list induces a partition of the data, the
total length of the encoded data can be given by the sum of its non-overlapping parts.
For a predictive rule list, the data encoding is given by:

L(Y | X,M) = L(Yd) +
∑
ri∈R

L(Yi), (3.5)

while for a subgroup list it is given by:

L(Y | X,M) = L(Yd | Θd) +
∑
si∈S

L(Yi), (3.6)

where Θd is the vector of parameters for each variable Θd
1, . . . ,Θ

d
t for the marginal

distribution of the target variables. Observe that we dropped Xa as these are not ne-
cessary to encode Ya but only to generate the partition of the data, and also dropped
the parameters Θi of the rules and default predictive rule as we do not know what are
their parameters until we see the data. This last part will be clarified at the end of this
section, where we describe how to encode subsets without knowing their parameters.
As can be seen, the difference between the predictive rule list and subgroup list is that
the default rule is either encoded as a regular rule, or using the dataset distribution.
This amounts to a difference in optimality between predictive rule lists and subgroup
lists, which emphasizes the discovery of different types of descriptions for each model
class.
As a side-note, note that Eq. (3.5) concerns the encoding of any supervised parti-
tion of the data, which allows to directly quantify the quality of any tree learning
method—each such tree induces a partition of the data.

Encoding data of t (assumed) independent target variables. As each target vari-
able is assumed independent from each other, the encoding of target data is given by
the sum of their individual encodings:

L(Y | X,M) = − log

 t∏
j=1

Pr(Yj | X,M)

 =

t∑
j=1

L(Yj | X,M). (3.7)

Joining (3.5) and (3.7), one obtains for predictive rule lists:

L(Y | X,M) =

t∑
j=1

L(Y dj) +
∑
si∈S

L(Y ij)

 (3.8)

and joining (3.6) and (3.7), one obtains for subgroup lists:

L(Y | X,M) =

t∑
j=1

L(Y dj | Θd
j) +

∑
si∈S

L(Y ij)

 (3.9)

40 3.3. Data encoding

3.3.1 Two types of data encoding

Data encoding can be separated into two different categories: 1) with known para-
meters; and 2) with unknown parameters. In our case, known parameters correspond
to the default rule of a subgroup list, while unknown parameters correspond to the
predictive rules, subgroups, and default rule of a predictive rule list.

1) Known parameters: when the parameters of a distribution are known, one can
encode the data points directly using the probability for those points given by the
distribution with the known parameters. Thus, the encoding of points Y ij (jth variable
and ith subgroup) is equal to the negative logarithm of their probability given by
known parameters Θ̂i

j:

L(Y ij | Θ̂i
j) =

∑
y∈Y i

j

− log Pr(y | Θ̂i
j), (3.10)

which is just the minus log-likelihood of parameter Θ̂i
j given observed data Y ij . This

type of code is used in the case of the default rule of a subgroup list, as the paramet-
ers Θ̂d

j are equal to the marginal distribution of variable Yj and are constant for each
dataset. Note that this is the key difference between a subgroup list and a predictive rule
list: the last rule of a subgroup list is fixed to the marginal distribution, while in the
predictive rule list its parameters are unknown and depend on the subset Dd.

2) Unknown parameters: when the parameters are unknown we need to encode
both the parameter values and the data points. We have two possibilities: 1) crude
MDL, i.e., encoding the probabilities using a suboptimal probability distribution and
then applying the Shannon-Fano code, i.e., the logarithm of the empirical probability
[114]; or 2) employ an optimal encoding of both parameters of the distribution and
data points together [48]. In this work, we employ optimal encoding of parameters,
as it guarantees optimality in the sense that the encoding is the best possible in the
worst-case scenario, i.e., in case the sample of the data is not representative of the
population. Three types of optimal encodings exist, which are, in increasing order of
optimality guarantees: 1) prequential plug-in; 2) Bayesian; 3) Normalized Maximum
Likelihood (NML). While the first two are asymptotically optimal, the NML encoding
is optimal for fixed sample sizes.
Depending on the target type, we employ the best encoding possible while being
computationally feasible, i.e., we require adequate run-time for our algorithm. For
nominal targets, we present a prequential plug-in and an NML encoding for both the
probabilities of each class and the data points in Section 3.4, where the second is a
theoretical improvement over the first. We resort to a Bayesian encoding for numeric
targets as the NML code is not computationally feasible for that case.

Chapter 3. MDL for rule lists 41

3.4 Data encoding: nominal target variables

When the data have one or more nominal targets, the target distributions of the prob-
abilistic rules (2.7) are categorical distributions Cat(Θ), each with a set of parameters
Θ = {p1, · · · , pk} representing the k classes:

Pr(y = c | p1, · · · , pk) = pc, subject to
k∑
c=1

pc = 1. (3.11)

This implies a probabilistic rule of the form:

a 7→ y1 ∼ Cat(p1, · · · , pk), · · · , yt ∼ Cat(p1′ , · · · , pk′),

where k and k′ are the number of classes Y1 and Yt, respectively. To simplify the in-
troduction of concepts we will assume we only have one target variable in Y, and
then generalize the results to multiple variables at the end. Also in line with this sim-
plification, we will only refer to association rules, and then, specialize in the end for
both predictive rule lists and subgroup lists. Thus, throughout this section Y becomes
Y , and the parameters of each rule ri become Θ̂i = {p1|i, · · · , pk|i} as there is only
one variable with k classes, where p1|i is the probability of class 1 for subgroup i, i.e.,
Pr(c = 1 | ai). The general form of a rule list with one nominal target takes the form
of Figure 3.4.

r1: IF a1 v x THEN y ∼ Cat(p̂1|1, · · · , p̂k|1)
...

rω: ELSE IF aω v x THEN y ∼ Cat(p̂1|ω, · · · , p̂k|ω)

default: ELSE y ∼ Cat(p̂1|d, · · · , p̂k|d)

Figure 3.4: Generic rule list model M with ω rules {r1, ..., rω} and a single nominal
target Y with k categories.

In the following sections, we will derive the data encoding with categorical distri-
butions. First, in Section 3.4.1, it is shown how to encode a categorical distribution
when its parameters are known, which is the case for the default rule of a subgroup
list. After that, in Section 3.4.2 it is shown how to encode a categorical distribution
when the parameters of the distribution are unknown. Then, in Section 3.4.3 the
equivalence between MDL-based subgroup lists with only one subgroup and standard
(top-1) subgroup discovery with WKL as a quality measure is proven. Finally, in Sec-
tion 3.4.4, we show the data encoding of subgroup lists is equivalent to a Bayesian
test. Note that for the next section we will also use the maximum likelihood expres-
sions of Section 2.3.2.

42 3.4. Data encoding: nominal target variables

3.4.1 Encoding categorical distributions with known parameters

To encode target values with known parameters—as is the case for the default rule
of a subgroup list—we can directly use Eq. (3.10) with given parameter estimates
Θ̂d = p̂1|d, · · · , p̂k|d (marginal distribution over the whole dataset):

L(Y d | p̂1|d, · · · , p̂k|d) =
∑
c∈Y
−nc|d log p̂c|d = −`(Θ̂d | Y d), (3.12)

where `(Θ̂d | Y d) is the log-likelihood of the parameter set Θ̂d, and nc|d denotes the
number of points associated with each class c covered by default rule Y d.
Note that we exemplified this code using the dataset marginal distribution parameters
as these are the only known parameters used throughout this thesis, however, this
encoding can be used with any known parameters.

3.4.2 Encoding categorical distributions with unknown paramet-
ers

To encode target values for which the parameters are unknown—as is the case for each
predictive rule, subgroup, and predictive default rule—we need to encode parameters
and data together. For that, we have developed two types of codes: 1) the prequential
plug-in code that is asymptotically optimal; and 2) the Normalized Maximum Likeli-
hood (NML) code that is “optimal in the sense that it achieves the minimax optimal
codelength regret” [48, Part II]. The prequential plug-in code was developed earlier
[96], as it is easier to use and compute. Nonetheless, the NML code enjoys better
theoretical properties, and thus should be preferred when possible.

Prequential plug-in encoding. The main idea of the prequential plug-in code is to
treat each subset of labels Y i as sequential data and then predict each label as it
arrives, starting with no knowledge about their distribution and updating it each
time one receives a label. To achieve that, it requires the use of a smoothed version of
the ML estimator, as before receiving any point we already need to have a probability
distribution

Prplug-in(yu = c | Y |u−1) ..=
|{y ∈ Y |u−1 | y = c}|+ ε∑

c′∈Y |{y ∈ Y |u−1 | y = c′}|+ ε
, (3.13)

where Y |u−1 represents the ordered sequence of u− 1 class labels, ε the pseudocount
which allows us to have probabilities before seeing any label.
Intuitively, this means that one starts with a pseudocount ε for each possible element,
constructs a code using these pseudocounts, starts encoding/sending/decoding mes-
sages one by one, and then updates the count of each element after sending/receiving

Chapter 3. MDL for rule lists 43

each individual message. The prequential plug-in code is asymptotically optimal even
without any prior knowledge of the probabilities [48].
Taking into account that the rule list creates a partition of the data, and applying
Eq. (3.13) to each class label in part, we obtain for each part5 Y i:

Lplug-in(Y i) = − log

 ni∏
u=1

Prplug-in(yu | Y i|u−1)

= − log

∏k
c=1

∏nc|i−1
u=0 (u+ ε)∏ni−1

j=0 (u+ kε)

= − log

(∏k
c=1(nc|i − 1 + ε)!/(ε− 1)!

(ni − 1 + kε)!/(kε− 1)!

)

= − log

(∏k
c=1 Γ(nc|i + ε)/Γ(ε)

Γ(ni + kε)/Γ(kε)

)
,

(3.14)

where Y i|u is a sequence of class labels of length u in part Di, and ni = |Di| and
nc|i = |Dc|i|. Further, Γ is the gamma function, an extension of the factorial to real
and complex numbers that is given by Γ(u) = (u−1)!. The most common values for ε,
which takes the role of a prior in the Bayesian literature [125], are the Jeffrey’s prior
of 0.5 or the uniform prior of 1. For simplicity in our experiments, the value of ε = 1

was used as it allows us to obtain natural factorials instead of gamma functions. It is
interesting to note two things: 1) we started with a sequential idea, but the final en-
coding of Eq. (3.14) is independent of the order in which the data is processed; and
2) for the case of categorical and multinomial distributions the prequential plug-in
code is equivalent to a Bayesian code with a Dirichelet prior [48, Chapter 9]

NML encoding. The expression of the NML code can be daunting, but its intuition
is very clear [65], i.e., the NML code is equivalent to first encoding all maximum
likelihood estimates of sequences Z of ni points based on their likelihoods, and then
encoding data Y i with its maximum likelihood estimate Θ̂i as in Eq. (3.12). Formally,
the NML code length of the subset Y i is given by6:

LNML(Y i) = − log

∏
y∈Y i Pr(y | Θ̂i)∑

Z∈Yni

∏
z∈Z Pr(z | Θ̂Z)

=
∑
c∈Y
−nc|i log p̂c|i + log

∑
Z∈Yni

∏
z∈Z

Pr(z | Θ̂Z)

= −`(Θ̂i | Y i) + C(ni, k)

(3.15)

5For full details and intuition on the derivations of the prequential plug-in code check Appendix B.
6For details on the derivation of Eq. (3.15), please see Appendix C.

44 3.4. Data encoding: nominal target variables

where Yni is the space of all possible sequences of ni points with cardinality k = |Y|
(possible values per point), Θ̂Z is the maximum likelihood estimate over Z, C(ni, k) is
the complexity—as it is called in MDL literature[48]—of the multinomial distribution
over ni points and k categories. Note that this term can be efficiently computed in
sub-linear time O(

√
dni + k) if approximated by a finite floating-point precision of d

digits [92].

Predictive rule list encoding. The total data encoding of a predictive rule list, using
the NML encoding, is obtained by inserting (3.12) and (3.15) in (3.8):

L(Y | X,M) =

t∑
j=1

LNML(Y dj) +
∑
ρi∈R

LNML(Y ij)

 , (3.16)

where for the total data encoding using the prequential plug-in code, substitute LNML(· · ·)
by Lplug-in(· · ·) of Eq. (3.14).

Subgroup list encoding. The total data encoding of a subgroup list, using the NML
encoding, is obtained by inserting (3.12) and (3.15) in (3.9):

L(Y | X,M) =

t∑
j=1

L(Y dj | Θ̂d) +
∑
si∈S

LNML(Y ij)

 , (3.17)

where Θd is the dataset marginal parameters, and for the total data encoding using
the prequential plug-in code, substitute LNML(· · ·) by Lplug-in(· · ·) of Eq. (3.14).

Example 6 (continuation): Let us revisit the Zoo subgroup list example of Figure 3.2
and compute the length encoding of the first subgroup subset Y 1 using the NML
encoding. To compute it we just need to get the probabilities associated with each
category ({0; 0; 0.56; 0.44; 0; 0; 0}), the number of samples covered by each of them
({0; 0; 10; 8; 0; 0; 0}), and the total number of categories k = |Y| = 7. Given these, the
length of encoding of the data Y 1 is given by:

LNML(Y 1) = (−10 log 0.56− 8 log 0.44) + C(18, 7)

= 17.84 + 10.42

= 28.26 bits.

3.4.3 Relationship of MDL-optimal subgroup lists to WKL-based
SD

We now investigate the relationship between finding an MDL-optimal subgroup list
and WKL-based top-k subgroup discovery. Remember that WKL is the weighted Kulback-

Chapter 3. MDL for rule lists 45

Leibler (WKL) divergence, an existing subgroup discovery measure [72] that can be
seen as an information-theoretic instance of the general form of a subgroup discovery
measure as given in Eq. (2.20); we described it in more detail in Section 2.6.2.
Assume that we have a single target variable (Y instead of Y) and a subgroup list
consisting of just one subgroup s with description a (and the default rule). Next, let
us turn the MDL minimization problem into a maximization problem by multiplying
Eq. (3.2) by minus one and adding a constant (for each dataset) L(Y | Θd) to obtain:

s∗ = arg max
s∈M

[
L(Y d | Θd)− L(Y | X,M)− L(M)

]
.

In the case of a subgroup list with one subgroup and one target, the data encoding of
Eq. (3.17) can be substituted by L(Y | X,M) = L(Y d | Θd) + LNML(Y a). Also, note
that Y d is given by all the points not covered by the subgroup description a, i.e., Y ¬a.
Thus, we can further develop the maximization problem to:

L(Y | Θ̂d)− L(Y | X,M)− L(M) =

= L(Y a | Θ̂d) + ������
L(Y ¬a | Θ̂d) − LNML(Y a)−������

L(Y ¬a | Θ̂d) − L(M)

=
∑
y∈Y s

log
p̂y|a

p̂y|d
− C(na, k)− L(M)

= na
∑
c∈Y

p̂c|a log

(
p̂c|a

p̂c|d

)
− C(na, k)− L(M)

= naKL(Θ̂a; Θ̂d)− C(na, k)− L(M),

(3.18)

where naKL(Θ̂a; Θ̂d) is the Weighted Kulback-Leibler divergence from Θ̂a to Θ̂d. This
result shows that finding the MDL-optimal subgroup is equivalent to finding the sub-
group that maximizes WKL, plus two extra terms: one that defines the complexity of the
distribution C(na, k), and another that defines the complexity of the subgroup L(M).
When we consider subgroup lists having more than one subgroup, Eq. (3.18) simply
expands to:

L(Y | Θ̂d)− L(Y | X,M)− L(M) =
∑
ai∈S

niKL(Θ̂i; Θ̂d)−
∑
ai∈S
C(ni, k)− L(M)

= SWKL(S)−
∑
ai∈S
C(ni, k)− L(M),

where SWKL(S) is the Sum of Weighted Kulback-Leibler divergences of subgroup set
S, a measure for subgroup set quality that we propose later in Section 3.6, and the
other terms penalize the complexity of the subgroup list. The fact that the MDL-based
objective for the optimal subgroup list can be formulated as subgroup set quality

46 3.5. Data encoding: numeric target variables

minus two terms for model complexity demonstrates that our formalization naturally
aims for subgroup lists of high quality while penalizing complexity.

3.4.4 Relationship of MDL-optimal subgroup lists to Bayesian test-
ing

We will now show how our MDL criterion is related to Bayesian testing. The Bayesian
alternative to statistical testing is the Bayesian factor, denoted here byK [58, 61]. The
Bayesian factor compares two models (hypotheses) through the division of the likeli-
hood of the data given each model Pr(D | M1)/Pr(D | M2), where the more likely
model dominates. Notice that the form that we arrived at in the term naKL(Θ̂a; Θ̂d)−
C(na, k)−L(M) of Eq. (3.18) (for a list consisting of one subgroup) is very similar to
the logarithm of a Bayes factor, and indeed it can be decomposed into:

L(Y | Θ̂d)− L(Y | X,M)− L(M) = log

(
Pr(Y | X,M)

Pr(Y | Θ̂d)

)
L(M)

= logK + L(M),

where we use the Shannon-Fano code [114] to transform code length in bits L(· · ·) to
probabilities Pr(· · ·). In practice, taking into account L(M) (or Pr(M)) is equivalent
to using the posterior distributions instead of just the Bayes factor, and in our case
amounts to a penalty for multiple hypothesis testing. This tells us that when finding
the first subgroup we are indeed maximizing an MDL version of a Bayesian factor,
and thus, doing an equivalent Bayesian proportions test (with a binary target) or a
multinomial test (with a nominal target). When we consider the problem of finding
a subgroup beyond the first, it is straightforward to observe that we are testing each
subgroup in S against the marginal distribution of the dataset.

3.5 Data encoding: numeric target variables

When we have one or more numeric target variables, the consequents of probabilistic
rules as in Eq. (2.7) are now normal distributions N (Θ) with parameters Θ = {µ, σ},
and take the following form:

Pr(y | µ, σ) =
1√

2πσ2
exp

(
− (y − µ)2

2σ2

)
,

where we use Pr(y | µ, σ) to denote the probability density function (pdf), which is a
slight abuse of notation that we admit to unify the whole work.

Chapter 3. MDL for rule lists 47

This translates to a probabilistic rule of the form:

a 7→ y1 ∼ N (µ̂a1, σ̂a1), · · · , yt ∼ N (µ̂at, σ̂at) (3.19)

To simplify the introduction of concepts we will again assume we only have one target
variable in Y, and then generalize the results to multiple variables at the end. Also
in line with this simplification, we will only refer to association rules, and then, spe-
cialize in the end for both predictive rule lists and subgroup lists. Thus, throughout
this section Y becomes Y , and the parameters of each rule ri become Θi = {µi, σi}
as there is only one variable. The general form of a rule list with normal target distri-
bution is given in Figure 3.5.

r1: IF a1 v x THEN y ∼ N (µ̂1, σ̂1)
...

rω: ELSE IF aω v x THEN y ∼ N (µ̂ω, σ̂ω)

dataset: ELSE y ∼ N (µ̂d, σ̂d)

Figure 3.5: Generic rule list model M with ω rules {r1, ..., rω} and a single numeric
target Y .

In the following subsections, we will derive the data encoding with normal distribu-
tions. First, in Section 3.5.1 we show how to encode a normal distribution when its
parameters µ and σ are known, such as is the case for the default rule of a subgroup
list. After that, in Section 3.5.2 we show how to encode a normal distribution using
an uninformative prior when the parameters of the distribution are unknown. Then,
in Section 3.5.3 the equivalence between MDL-based subgroup lists with only one
subgroup and standard (top-1) subgroup discovery with WKL as a quality measure
is proven. Finally, in Section 3.5.4, we show the data encoding and corresponding
criterion are equivalent to a Bayesian test. Note that for the next section we will also
use the maximum likelihood expressions of Section 2.3.2.

3.5.1 Encoding normal distributions with known parameters

To encode target values with known parameters—as is the case for the default rule
of a subgroup list—we can directly use Eq. (3.10) with given parameter estimates

48 3.5. Data encoding: numeric target variables

Θ̂d = {µ̂d, σ̂d} (marginal distribution over the whole dataset):

L(Y d | µ̂d, σ̂d) = − log

 ∏
y∈Y d

1√
2πσ̂2

d

exp

(
(y − µ̂d)2

2σ̂2
d

)
=
nd
2

log 2π +
nd
2

log σ̂2
d +

 1

2σ̂2
d

∑
y∈Y d

(y − µ̂d)2

 log e

= −`(Θ̂d | Y d),

(3.20)

where `(Θ̂d | Y d) is the log-likelihood of the parameter set Θ̂d. The first two terms
are normalization terms of a normal distribution, while the last term represents the
Residual Sum of Squares (RSS) normalized by the variance of the data. Note that
when Yd = Y , i.e., the whole dataset target, RSS is equal to ndσd, and the last term
reduces to nd/2 log e.
Note that we exemplified this code using the dataset marginal distribution parameters
as these are the only known parameters used throughout this thesis, however, this
encoding can be used with any known parameters.

3.5.2 Encoding normal distributions with unknown parameters

In contrast to the previous case, here we do not know a priori the statistics defining
the probability distribution corresponding to the rule, i.e., µ̂ and σ̂ are not given by
the model, and thus both need to be encoded. For this, we resort to the Bayesian
encoding of a normal distribution with mean µ and standard deviation σ unknown,
which was shown to be asymptotically optimal [48]. The optimal code length is given
by the negative logarithm of a probability, and the optimal Bayesian probability for
Y i is given by

LBayes(Y
i) =

− log

∫ +∞

−∞

∫ +∞

0

(2πσ)−
ni
2 exp

− 1

2σ2

∑
y∈Y i

(y − µ)2

w(µ, σ) dµdσ,
(3.21)

where w(µ, σ) is the prior on the parameters, which needs to be chosen.

Choosing the prior. The MDL principle requires the encoding to be as unbiased as
possible for any values of the parameters, which leads to the use of uninformative
priors. The most uninformative prior is Jeffrey’s prior, which is 1/σ2 and therefore
constant for any value of µ and σ, but unfortunately its integral is undefined, i.e.,∫ ∫

σ−2 dσ dµ =∞. Thus, we need to make the integral finite, which we will do next.

Chapter 3. MDL for rule lists 49

It should be noted that when using normal distributions with Bayes factors—Bayesian
equivalent to traditional statistical testing—the authors tend to also add a normal
prior on the effect size, as e.g., δ = µ/σ ∼ N (0, τ) [58, 44, 110]. Nonetheless, this
prior gives a higher probability to values of µ closer to zero, which is a bias that we do
not want to impose. Thus we only use Jeffrey’s prior, which converges7 to the Bayes
Information Criterion (BIC) for large n.

Now, given the our prior w(µ, σ) = 1
σ2
√

2π
—where

√
2π was added for normaliza-

tion reasons—the remaining question is how we can make the integral finite. The
most common solution, which we also employ, is to use u data points from Y i, de-
noted Y i|u, to create a proper conditional prior w(µ, σ | Y i|u). As there are only two
unknown parameters, we only need two points hence u = 2 [48]; for more on the in-
terpretation of such “priors conditional on initial data points”, see [47]. Consequently,
we first encode Y i|2 with a non-optimal code that is readily available—i.e., the dataset
distribution of Eq. (3.20)—and then use the Bayesian rule to derive the total encoded
length of Y i as

LBayes2.0(Y i) = − log
PBayes(Y

i)

PBayes(Y i|2)
P (Y i|2 | µd, σd)

= LBayes(Y
i) + Lcost(Y

i|2),

(3.22)

where Lcost(Y
i|2) = L(Y i|2 | µd, σd) − LBayes(Y

i|2) is the extra cost incurred by
encoding two points non-optimally. After some re-writing8 we obtain the encoded
length of the y values covered by a subgroup Y i as

LBayes2.0(Y i) = LBayes(Y
i) + Lcost(Y

i|2)

= 1 +
ni
2

log π − log Γ

(
ni
2

)
+

1

2
log(ni) +

ni
2

log niσ̂
2
i + Lcost(Y

i|2),
(3.23)

where Γ is the Gamma function that extends the factorial to the real numbers (Γ(n) =

(n−1)! for integer n) and µ̂i and σ̂i are the statistics of Eqs. (2.10) and (2.11), respect-
ively. Note that for Y i|2 any two unequal values (otherwise σ̂2 = 0 and LBayes(Y i|2) =

∞) can be chosen from Y a, thus we choose them such that they minimize Lcost(Y i|2).

Predictive rule list encoding. The total data encoding of a predictive rule list, is
obtained by inserting Eq. (3.20) and (3.23) in (3.8):

L(Y | X,M) =

t∑
j=1

L(Y dj | Θd) +
∑
si∈S

LBayes2.0(Y ij)

 .

7See proof in Appendix E.
8The full derivation of the Bayesian encoding and an in-depth explanation are given in Appendix D.

50 3.5. Data encoding: numeric target variables

Subgroup list encoding. The total data encoding of a subgroup list, is obtained by
inserting Eq. (3.20) and (3.23) in (3.9):

L(Y | X,M) =

t∑
j=1

L(Y dj | Θd) +
∑
si∈S

LBayes2.0(Y ij)

 ,

where Θd is the dataset marginal parameters.

Example 7 (continuation): We revisit the Automobile subgroup list of Figure 3.3
and find the length of the Bayes2.0 encoding (Eq. (3.23)) of the first subgroup. To
compute it we need to get the statistics of the subgroup (Θ̂1 = {µ̂1 = 35; σ̂1 = 8}), the
number of samples it covers (n1 = 11), the dataset statistics (Θ̂d = {µ̂d = 13; σ̂d =

8}), and the two points closest to the dataset mean Y 1|2 = {14; 31} that make the
encoding proper (and which are not available in the example information). Assuming
that Lcost(Y i|2) = 0.69bits for simplicity, the length of the encoding of Y 1 is given by:

LBayes2.0(Y 1) =1 +
11

2
log π − log Γ

(
11

2

)
+

1

2
log(11 + 1) +

11

2
log 11 · 82

+ Lcost(Y
i|2)

=58.06 + 0.69

=58.75 bits.

3.5.3 Relationship of MDL-optimal subgroup lists to WKL-based
SD

As in Section 3.4 we next investigate the relationship between finding an MDL-
optimal subgroup list and WKL-based top-1 subgroup discovery, but now for the nu-
meric case.
First, we show that Eq. (3.23)—with mean and variance unknown—converges, for
large n, to Eq. (3.20)—with mean and variance known—plus an additional term.
Using the Stirling approximation of Γ(n+ 1) ∼

√
2πn

(
n
e

)n
leads to9

LBayes2.0(Y a) ∼ na
2

log 2π +
na
2

log σ̂2
a +

na
2

log e+ log
na
e
, (3.24)

where log n
e is equal to the penalty term of BIC and similar to the usual MDL com-

plexity of a distribution [48].
Now, we can show that minimizing our MDL criterion is equivalent to maximizing a
subgroup discovery quality function of the form of Eq (2.20). Focusing on the case

9The complete derivation can be found in the Appendix E

Chapter 3. MDL for rule lists 51

where M = {s} contains only one subgroup with description a and statistics Θ̂a =

{µ̂a, σ̂a}, we start with L(Y | X,M) (Eq. (3.2)), multiply it by minus one to make it
a maximization problem, and add a constant L(Y | µ̂d, σ̂d), i.e., the encoded size of
the whole target Y using the overall distribution dataset. We then get

s∗ = arg max
s∈M

[
L(Y d | Θd)− L(Y | X,M)− L(M)

]
.

Developing this further, the subgroup s that maximizes this expression is equivalent
to the one that maximizes

L(Y | Θ̂d)− L(Y | X,M)

= L(Y a | Θ̂d)− LBayes2.0(Y a | Xa)− L(M)

∼ na
2

log
σ̂2
d

σ̂2
a

+

 1

2σ̂2
d

∑
yi∈Y a

(yi − µ̂d)2

 log e− na
2

log e− log na − L(M)

=
na
2

log
σ̂2
d

σ̂2
a

+

[∑
yi∈Y a(yi)2 − nµ̂2

a + nµ̂2
a − 2nµ̂aµ̂d − µ̂d)2

2σ̂2
d

]
log e

− na
2

log e− log na − L(M)

= na

[
log

σ̂d
σ̂a

+
σ̂2
a + (µa − µd)2

2σ̂2
d

log e− log e

2

]
− log(na)− L(M)

= naKL(Θ̂a; Θ̂d)− log na − L(M),

(3.25)

where naKL(Θ̂a; Θ̂d) is the usage-weighted Kullback-Leibler divergence between the
normal distributions specified by the respective parameter vectors. Similar to the res-
ult for the nominal target in Section 3.4.3, this shows that finding the MDL-optimal
subgroup is equivalent to finding the subgroup that maximizes the weighted Kullback-
Leibler (WKL) divergence, an existing subgroup discovery quality measure [72], plus
two terms. The first defines the complexity of the subgroup distribution with two
parameters, the second compensates for multiple hypothesis testing (i.e., the num-
ber of possible subgroups). When we have a list with multiple subgroups, Eq. (3.18)
expands to

L(Y | Θ̂d)− L(Y | X,M)− L(M) ∼
∑
ai∈S

niKL(Θ̂i; Θ̂d)−
∑
ai∈S

log(ni)− L(M)

= SWKL(S)−
∑
ai∈S

log(ni)− L(M),

where SWKL(S) is the measure of subgroup set qualities that we proposed in Sec-
tion 3.6, and the other terms penalize the complexity of the subgroup list.

52 3.6. A new measure for subgroup sets: the sum of WKL divergences

Dispersion-correction quality measure. Importantly, we can observe from Eq. (3.18)
that the measure based on the Kullback-Leibler divergence of normal distributions is
part of the family of dispersion-corrected subgroup quality measures, as it takes into
account both the centrality and the spread of the target values [12].

3.5.4 Relationship of MDL-optimal subgroup lists to Bayesian test-
ing

When we have only one subgroup s in a subgroup list, the data encoding for numeric
targets of Eq. (3.5.2) is equivalent to the negative logarithm of a Bayes factor [44,
110]. Indeed, the choice of the prior was based on the Bayesian one-sample t-test by
Gönen et al. [44], and we effectively perform a one-sample t-test (including two extra
terms) for each subgroup. Formally—and similar to the nominal case as described in
Section 3.4.4—a Bayes factor K [58, 61] is given by the division of the likelihoods of
the data given each hypothesis: Pr(D |M1)/Pr(D |M2). If we use the maximization
equivalent of Eq. (3.25),

L(Y | Θ̂d)− L(Y | X,M)− L(M) = log

(
Pr(Y | X,M)

Pr(Y | Θ̂d)

)
L(M)

= logK + L(M),

we can see that we have the Bayes factor plus the model encoding. To transform
code lengths in bits L(· · ·) to probabilities Pr(· · ·) we used the Shannon-Fano code
[114], which states that the best encoding is given by the negative logarithm of its
probability for an event A, i.e., L(A) = − log Pr(A). Our MDL-based criterion aims at
maximizing a one-sample t-test for numeric targets between the subgroup distribution
and the marginal distribution of the dataset while taking into account L(M), which
is equivalent to using the posterior distribution and penalizes for multiple hypothesis
testing. When we aim to find subgroups beyond the first, it is trivial to see that we are
testing each subgroup in S against the marginal distribution of the dataset.

3.6 A new measure for subgroup sets: the sum of WKL
divergences

As discussed in Section 2.7, there is no SSD measure, to the best of our knowledge,
that takes into account the individual quality of subgroups and their global quality
over the whole dataset. Therefore, based on the results of Section 3.4.3 and 3.5.3,
it is natural to extend the flexible WKL measure in subgroup discovery (described in
Section 2.6.2) to subgroup sets.

Chapter 3. MDL for rule lists 53

That is, we propose the Sum of Weighted Kullback-Leibler divergences (SWKL), which
can be interpreted as the sum of weighted KL divergences for the individual sub-
groups:

SWKL(S) =

∑ω
i=1 niKL(Θ̂i

j ; Θ̂d
j)

|D|
, (3.26)

where i is the index of each subgroup in a subgroup list, ω is the number of subgroups
in S, and |D| is the number of instances in D. The latter is used to normalize the
measure and make values comparable across datasets. In the case of multiple target
variables, the normalization could also include the number of targets, but that is
not used in this thesis. The SWKL measure assumes that the data is partitioned per
subgroup and that subgroups can be interpreted sequentially as a list, i.e., the second
subgroup is interpreted as the description of the second subgroup is active, while the
one of the first is not active.
An advantage of the SWKL measure is that it can be used for any type of target vari-
able(s), as long as they are described by a probabilistic model. Note that computing
SWKL is straightforward for subgroup lists, but not for subgroup sets as instances can
be covered by multiple subgroups. For subgroup sets, it would be necessary to expli-
citly define the type of probabilistic overlap, e.g., additive or multiplicative mixtures
of the individual subgroup models.

It should be noted that this measure only quantifies how well a list of subgroups
capture the deviations in a given dataset and is prone to overfitting: the higher the
number of subgroups, the easier it is to obtain a higher value as there is no penalty
for the number of subgroups (or their complexities, for that matter). As such, SWKL
can be seen as a measure for ‘goodness of fit’ for subgroup lists. This turns out to not
be an issue for our approach though, as our MDL-based criterion naturally penalizes
for multiple hypothesis testing and complexity of the individual subgroups. Further, it
is neither an issue in our empirical comparisons in Section 5.3, as the number of sub-
groups found was similar for most algorithms, rendering the SWKL-based comparison
valid.

3.7 Theoretical difference between subgroup list and
predictive rule list

In this section, we show the difference between the objectives for subgroup discovery
and predictive rules. We do this through the comparison of the equivalent maxim-
ization MDL scores for subgroup lists and classification rule lists [96] with only one
rule—without loss of generality for greater sizes or regression tasks. To differentiate

54 3.7. Theoretical difference between subgroup list and predictive rule list

both model classes SL and RL will be used for subgroup lists and classification rule
lists, respectively.
First, let us recall the form of a subgroup list SL as given in:

subgroup 1 : IF a v x THEN y ∼ Cat(Θ̂a)

dataset : ELSE y ∼ Cat(Θ̂d)

where Θ̂a are the estimated parameters of subgroup 1 and Θ̂d are the estimated para-
meters of the marginal distribution of the dataset and are thus constant for each
dataset. On the other hand, the model form of a classification rule list RL takes the
following form:

predictive rule 1 : IF a v x THEN Cat(Θ̂a)

default : ELSE y ∼ Cat(Θ̂¬a)

where Θ̂¬a was used to emphasize that the default rule of a predictive rule list is not
fixed, and is equivalent to the ‘not rule 1’. This is the key difference between these two
types of models: for subgroup lists the default rule is fixed to the marginal distribution
of the dataset, while for predictive rule lists the default rule has the distribution of the
negative set of the rules in the list. It should be noted that there are many definitions
of rule lists for classification that use a fixed default rule, however having a variable
default rule that maximizes the prediction quality is the best representative of pre-
dictive rule lists and of the objective of finding the best machine learning model, i.e.,
returning the best partition of the data with the smallest error possible. Note that a
decision tree also belongs to this family of models, as any path starting at the root of
the tree to one of its leaves also forms a rule, and thus, a decision tree is equivalent to
a set of disjoint rules, i.e., none of the rules described in this way overlap on a dataset.
For the type of classification rule lists defined above, the encoding of the first rule and
default rule is given by Eq. (3.15) as for both rules the parameters are unknown.
Thus the MDL score of a predictive rule list can be rewritten as:

L(D,RL) = L(Y a | Xa) + L(Y ¬a | X¬a) + L(RL), (3.27)

and note that the model encoding L(RL) = L(SL) when having the same association
rules.
Following the same steps as in Section 3.4.3, turning the MDL score objective from a
minimization to maximization by multiplying by minus one and adding the constant
L(Y d | Θd), we obtain the same objective as in Eq. (3.4.3):

ρ∗ = arg max
s∈M

[
L(Y d | Θd)− L(Y | X, RL)− L(RL)

]
,

Chapter 3. MDL for rule lists 55

where ρ is the classification rule that maximizes the objective. Working out this equa-
tion, maximization objective of a classification rule list for a target variable of k class
labels is given by:

L(Y | Θ̂d)− L(Y | X,M)− L(RL)

= L(Y a | Θ̂d) + LNML(Y ¬a | Θ̂d)− L(Y a | Xa)− LNML(Y ¬a | X¬a)− L(RL)

= naKL(Θ̂a; Θ̂d)− C(na, k) + n¬aKL(Θ̂¬a; Θ̂d)− C(n¬a, k)− L(RL),

(3.28)

This should be contrasted with the maximization objective of subgroup list of Eq. 3.18,
which is given by:

L(Y | Θ̂d)− L(Y | X,M)− L(SL) =

naKL(Θ̂a; Θ̂d)− C(na, k)− L(SL).

Comparing the two previous equations, we can notice the most important distinction
between subgroup discovery and classification: the local nature of subgroup discovery
and the global nature of the classification task. In other words, subgroup discovery
aims at finding subgroups that locally maximize their quality, independently of the
rest of the dataset, and even though classification rules try to maximize their local
quality also, they have to take into account the quality of their negative set, i.e., a
classification rule cannot be considered by its quality alone, it has to be considered in
terms of its global impact in the dataset.
On the other hand, this result also shows the similarity between both tasks and where
the confusion sometimes arises, i.e., in particular cases the best subgroup can also be
the best predictive rule. An example of this would be a very large dataset (relatively
to the number of observations covered by the rule), and the best rule would cover a
small number of observations compared to the rule formed by the negative set of that
rule, i.e., D¬a, as a similar distribution to Θ̂d, making Θ̂¬a ∼ Θ̂d.

4
Discovering predictive rule lists with

CLASSY

In this chapter1, we propose the CLASSY algorithm based on the MDL formulation
of predictive rule lists given in Chapter 3. This algorithm uses a greedy heuristic to
find good predictive rule lists and can be applied to supervised tabular datasets with
univariate nominal targets, i.e., multiclass classification. In machine learning, a pre-
dictive rule list is an instance of interpretable machine learning models, as long as
the number of rules is reasonably small. To validate our approach, we conduct an
empirical comparison on 17 datasets against state-of-the-art-algorithms.

Note that in Chapter 3 we presented a formulation of predictive rule lists for single
and multi-nominal classification and single and multi-regression problems. However,
we only developed CLASSY for discrete explanatory variables and regular classifica-
tion, hence, we only present results for this scenario in this chapter. For regression
the greedy algorithm would require some changes in order to find good regression
rule lists.

Recapitulation of predictive rule list definition and MDL encoding. In the previous
chapters we defined what a predictive rule list is and gave its definition of optimality
according to the MDL principle. We will now restate those definitions here.

First, let us recall from Chapter 2.4 the predictive rule lists model in Figure 4.1.

The best predictive rule list RL according to the MDL principle is the one that, given

1Parts of this chapter are based on Proença and van Leeuwen [96]

58

s1: IF a1 v x THEN y ∼ Cat(p̂1|1, · · · , p̂k|1)
...

sω: ELSE IF aω v x THEN y ∼ Cat(p̂1|ω, · · · , p̂k|ω)

dataset: ELSE y ∼ Cat(p̂1|d, · · · , p̂k|d)

Figure 4.1: Generic rule list model RL for classification with ω rules R = {r1, ..., rω}
and one target variable distribution per rule. Note that the parameters of the default
rule of a rule list are not fixed (in contrast to those of a subgroup list) and just de-
scribes the subset covered by it, i.e., Dd.

the dataset D, minimizes the two-part code defined in Chapter 3.1:

RL∗ = arg min
RL∈RL

L(D,RL) = arg min
RL∈RL

[
L(Y | X, RL) + L(RL)

]
,

where L(RL) is the length of encoding the predictive rule list model RL, and L(Y |
X, RL) is the length of encoding the target variables data given the predictive rule list
RL and the explanatory variables X. The model encoding is the same for predictive
rule lists and subgroup lists, as they only differ in how the default rule encodes the
data, and was defined in Chapter 3.2. Nonetheless, at the time these experiments were
developed [96], the formulation was only done for discrete explanatory variables, and
it is suboptimal compared to that of Eq. (3.3). Thus, the model encoding throughout
this chapter is:

L(RL) = LN(|R|) +
∑
ai∈R

[
LN(|ai|) + |ai| logm

]
,

where R is the list of predictive rules in RL, i.e., the model excluding the default
rule. Compared with Eq. (3.3), we here used a uniform code for the variables in ai,
i.e., |ai| logm, which is suboptimal for unordered sets compared to

(
m
|ai|
)
. Also, we do

not require
∑
v∈ai L(v) for the different types of variables, as only binary explanatory

variables were considered, and only their positive value, i.e., x = 1 is encoded.
Then, in the case of classification, where there is only one target variable Y , we use a
categorical distribution and the Prequential Plug-in encoding defined in Chapter 3.4:

L(Y | X, RL) = Lplug-in(Y d) +
∑
ρi∈R

Lplug-in(Y i),

which is asymptotically optimal. Even though the Normalized Maximum Likelihood
encoding is optimal for finite n, and thus, theoretically better than the prequential
plug-in, we did not find very significant differences in preliminary experiments, ex-
cept for a few edge cases.

Chapter 4. Discovering predictive rule lists with CLASSY 59

Structure of the chapter. This chapter is organized as follows. First, in Section 4.1 the
most relevant related work is covered, together with the main differences to our ap-
proach. After that, in Section 4.2 the CLASSY algorithm, a heuristic algorithm to mine
predictive rule lists is defined. Then, in Section 4.3 we empirically validate our pro-
posed method on 17 datasets when compared against the state-of-the-art algorithms
for classification. Finally, in Section 4.4 the main conclusions are presented.

4.1 Related work

We start by comparing the most important features of our algorithm to those of state-
of-the-art algorithms and then provide a brief overview of the most relevant literature,
grouped into three topics: 1) rule-based models; 2) similar approaches in pattern
mining; and 3) MDL-based data mining. For an in-depth overview of interpretable
machine learning, we refer to Molnar [91].

Table 4.1 compares the most important features of our proposed approach, called
CLASSY, to those of other rule-based classifiers, which will be described in the next
subsections. Classical methods, such as CART [15], C4.5 [103], and RIPPER [22],
lack a global optimisation criterion and thus rely on heuristics and hyperparamet-
ers to deal with overfitting. Fuzzy rule-based models [3, 59], here represented by
FURIA [55] use rule sets instead of rule lists and lack probabilistic predictions. Recent
Bayesian methods [122, 69, 122] are limited to small numbers of candidate rules and
binary classification, limiting their usability, and are here represented by SBRL [125]
(which is representative for all of them). A recent approach also using MDL and prob-
abilistic rule lists (MRL) [7] is aimed at describing rather than classifying and cannot
deal with multiclass problems or a large number of candidates. Interpretable decision
sets (IDS) [69] and certifiable optimal rules (CORELS) [5] use similar rules but do
not provide probabilistic models or predictions.

Note that methods that explain black-box models [104, 105], typically denoted by
the term explainable machine learning, also aim to make the decisions of classifiers
interpretable. However, they mostly focus on sample-wise (local interpretation) ex-
planations, while we focus on explaining the whole dataset (global interpretation)
using a single model. As these goals lead to clearly different problem formulations
and thus different results, it would not be meaningful to empirically compare our
approach to explainable machine learning methods [111].

60 4.1. Related work

Table 4.1: Our approach, CLASSY, does Multiclass classification, makes Probabil-
istic predictions, has a global optimisation Criterion, can handle large numbers of
candidate rules, and does not need hyperparameter tuning. “Others” denotes classical
algorithms such as CART, CBA, C4.5, and RIPPER.

Method Multiclass Probabilistic Criterion �1K cand No tuning

CLASSY 3 3 3 3 3

IDS[69] 3 - 3 3 -

CORELS [5] - - 3 - -

MRL[7] - 3 3 - 3

SBRL[125] - 3 3 - -

FURIA[55] 3 - - 3 -

Others 3 3 - 3 -

4.1.1 Rule-based classifiers

Rule lists have long been successfully applied for classification; RIPPER is one of
the best-known algorithms [22]. Similarly, decision trees, which can easily be trans-
formed to rule lists, have been used extensively; CART [15] and C4.5 [103] are prob-
ably the best-known representatives. These early approaches represent highly greedy
algorithms that use heuristic methods and pruning to find the ‘best’ models.

Fuzzy rule-based models. Fuzzy rules have been extensively studied in the context
of classification and interpretability. Several approaches to construct fuzzy rule-based
models have been proposed, such as transforming the resulting model of another
algorithm into a fuzzy model and posteriorly optimizing it [55], using genetic al-
gorithms to combine pre-mined fuzzy association rules [3], and doing a multiobject-
ive search over accuracy and comprehensibility to find Pareto-optimal solutions [59].
Although these approaches are related, the rules are aggregated in a rule set, i.e., a set
of independent if · · · then · · · rules that can be activated at the same time to classify
one instance, contrary to one rule at the time for rules lists. This makes the compar-
ison between both types of models difficult. Also, these fuzzy rule-based models do
not provide probabilistic predictions.
Global optimization approaches. Over the past years, rule learning methods that
go beyond greedy approaches have been developed, i.e., using probabilistic logic pro-
gramming for independent rule-like models [11], greedy optimization of submodular
problem formulation, or simulated annealing in the case of decision sets [69, 122],
Monte-Carlo search for Bayesian rule lists [81, 125], and through branch-and-bound

Chapter 4. Discovering predictive rule lists with CLASSY 61

with tight bounds for decision lists [5]. Even though in theory these approaches could
be easily extended to the multiclass scenario, in practice their algorithms do not scale
with the higher dimensionality that arises from the search in multiclass space with
optimality criteria. Also, only Bayesian rule lists [81, 125] and Bayesian decision sets
[122] provide probabilistic predictions.

All previously mentioned algorithms share some similarities with CLASSY. In partic-
ular Bayesian rule lists [81, 125] are closely related as they use the same type of
models, albeit with a different formulation, based on Bayesian statistics. This differ-
ence leads to different types of priors—for example, we use the universal code of
integers [108]—and therefore to different results; we will empirically compare the
two approaches. Certifiable optimal rules [5] have a similar rule structure but do not
provide probabilistic models or predictions. Decision sets [69] share the use of rules,
but as opposed to (ordered) lists they consider (unordered) sets of rules.

4.1.2 Pattern mining

Association rule mining [2], a form of pattern mining, is concerned with mining re-
lationships between itemsets and a target item, e.g., a class. One of its key problems
is that it suffers from the infamous pattern explosion, i.e., it tends to give enormous
amounts of rules. Several classifiers based on association rule mining have been pro-
posed. Best-known are probably CBA [85] and CMAR [82], but they tend to lack
interpretability because they use large numbers of rules. Ensembles of association
rules, such as Harmony [121] or classifiers based on emergent patterns [41], can in-
crease classification performance when compared to the previous methods, however,
they can only offer local interpretations.

Supervised pattern set mining [128]. The key difference is that these methods do not
automatically trade-off model complexity and classification accuracy, requiring the
analyst to choose the number of patterns k in advance.

Note that subgroup discovery, and specifically subgroup lists, are also related as they
share the same model structure as predictive rule lists. For more details on that, we
refer the interested reader to Chapter 4.

4.1.3 MDL-based data mining

In data mining, the MDL principle has been used to summarize different types of data,
e.g., transaction data [120, 18], and two-view data [73].

62 4.2. The CLASSY algorithm

In prediction, it has been previously used to deal with overfitting [22, 103] and in the
selection of the best compressing pattern [127].
RIPPER and C4.5 [22, 103] use the MDL principles in their post-processing phase as
a criterion for pruning, while we use it in a holistic way for model selection. Although
Krimp has been used for classification [120], it was not designed for this: it outputs
large pattern sets, one for each class, and does not give probabilistic predictions.
DiffNorm [18] creates models for combinations of classes and also uses the prequen-
tial plug-in code, but was designed for data summarization. Aoga et al. recently also
proposed to use probabilistic rule lists and MDL [7], but 1) we propose a vastly im-
proved encoding, which is tailored towards prediction (instead of summarization), 2)
our solution does multiclass classification, and 3) our algorithm has better scalability.

4.2 The CLASSY algorithm

Given our model class—predictive rule lists—and its corresponding MDL formula-
tion, what remains is to develop an algorithm that—given the training data—finds
the best model according to our MDL criterion. To this end, in this section, we present
CLASSY, a greedy search-based algorithm that iteratively finds the best predictive rules
to add to a rule list. This section is structured as follows. First, a brief description of
separate-and-conquer greedy search is given. Then compression gain, i.e., the meas-
ure that uses compression to score candidate rules, is described. After that, the CLASSY

algorithm is defined. Then, it is explained how individual rules—candidates for the
model—are generated from the data. Finally, we analyse CLASSY’s time and space
complexity.

4.2.1 Separate-and-conquer greedy search

Greedy search is very commonly used for learning decision trees and predictive rule
lists [103, 22, 39], as well as for pattern-based modelling using the MDL principle
[120, 18, 73]. A few recent approaches use optimization techniques [125], but these
have the limitation that the search space must be strongly reduced, providing an
exact solution to an approximate problem (as opposed to an approximate solution to
an exact problem).
Global heuristics, such as evolutionary algorithms, have been extensively applied to
fuzzy rule-based model learning [34], and although they could also be applied here,
we found that the arguments in favor of a local search approach were stronger: 1)
local heuristics have often been successfully applied for pattern-based modelling using
the MDL principle, making it a natural approach to consider; 2) local heuristics are
typically faster than global heuristics, as much fewer candidates need to be evaluated;

Chapter 4. Discovering predictive rule lists with CLASSY 63

3) global heuristics typically require substantially more (hyper)parameters that need
to be tuned (e.g., population size, selection and mutation operators, etc.), while local
heuristics have very few.
Given the arguments presented here the algorithm that we propose is based on greedy
search. More specifically, it is a heuristic algorithm that, starting from a rule list with
just a default rule equal to the priors of the class labels in the data, adds rules accord-
ing to the well-known separate-and-conquer strategy [39]: 1) iteratively find and add
the rule that gives the largest change in compression; 2) remove the data covered by
that rule; and 3) repeat steps 1-2 until compression cannot be improved. This implies
that we always add rules at the end of the list, but before the default rule.

4.2.2 Compression gain

The proposed heuristic is based on the compression gain that is obtained by adding
a rule ρ = (a, Θ̂a) to a rule list RL, which will be denoted by RL ⊕ ρ. Note that for
categorical distributions Θ̂a = {p̂1|a, · · · p̂k|a}, which are just the conditional probab-
ility for each class label c ∈ {1, · · · , k}, given the description a. We will argue—and
demonstrate empirically later—that for the current task it is better to consider nor-
malized gain rather than the typically used absolute gain. Note that the gains are
defined as positive if adding a rule represents a compression improvement, and neg-
ative vice-versa.

Absolute compression gain, denoted ∆L(D,RL⊕ ρ), is defined as the difference in
code length before and after adding a rule ρ to R. The gain can be divided into two
parts: data gain, ∆L(Y | X, RL⊕ρ), and model gain, ∆L(RL⊕ρ). Together this gives

∆L(D,RL⊕ ρ) = L(D,RL)− L(D,RL⊕ ρ)

= Lplug-in(Y | X, RL)− Lplug-in(Y | X, RL⊕ ρ)︸ ︷︷ ︸
∆L(Y |X,RL⊕ρ)

+ L(R)− L(RL⊕ ρ)︸ ︷︷ ︸
∆L(RL)

,

(4.1)

where Lplug-in(· · ·) was used to refer that we use the prequential plug-in encoding of
Eq. (3.14) in this chapter (instead of the Normalized Maximum Likelihood). Using
Eq. (4) we show the model gain as:

∆L(RL⊕ ρ) =LN(|R|)− LN(|R|+ 1)

− LN(|a|)− |a| logm.
(4.2)

64 4.2. The CLASSY algorithm

Note that the model gain is always negative, as adding a rule adds additional com-
plexity to the model.

In the case of the data gain, it should be noted that adding rule ρ to RL only activates
the part of the data previously covered by the default rule, as new rules are only
added after the previous ones and before the default rule. This search strategy of
adding rules assumes that the previous rules already cover their subset well and that
improvements only need to be made where no rule is activated, which corresponds to
the region of the dataset covered by the default rule. Hence, we only need to compute
the difference in length of using the previous default rule ρd and the combination of
the new pattern a ∈ ρ with the new default rule ρ′d. Using Equation (B.3) we obtain

∆L(Y | X, RL⊕ ρ) =

Lplug-in(Y |X,RL)︷ ︸︸ ︷
�
���

���ω∑
i=1

Lplug-in(Y i) + Lplug-in(Y d)

−
��

���
��ω∑

i=1

Lplug-in(Y i) − Lplug-in(Y d
′
)− Lplug-in(Y a)︸ ︷︷ ︸

Lplug-in(Y |X,RL⊕ρ)

,

(4.3)

where Y d
′

is the subset of the data covered by the new default rule (after ρ is added
to RL) and ω = |R|.
Normalized compression gain, denoted δL(D,RL ⊕ ρ), is defined as the absolute
gain normalized by the number of instances that are activated by pattern a ∈ r, which
can be obtained by dividing absolute gain by the usage of a:

δL(Y | X, RL⊕ ρ) =
∆L(Y | X, RL⊕ ρ)

na
(4.4)

By normalizing for the number of instances that a predictive rule covers, normalized
gain favors rules that cover fewer instances but provide more accurate predictions com-
pared to absolute gain. When greedily covering the data, it is essential to prevent
choosing large but moderately accurate rules in an early stage; this is likely to lead
to local optima in the search space, from which it could be hard to escape. As this is
bound to happen when using absolute gain, we hypothesize that normalized gain will
lead to better predictive rule lists. We will empirically verify if this is indeed the case.

Note that the absolute and normalized gains are specific cases of the β-gain of Eq. (5.1)
presented later in Chapter 5, where for these specific cases, they correspond to β = 0

and β = 1, respectively.

Chapter 4. Discovering predictive rule lists with CLASSY 65

4.2.3 Candidate generation

Candidates are probabilistic rules of the form ρ = (a, Θ̂a) that are considered for
addition to a predictive rule list for a dataset D. The candidates are generated by
first mining a rule antecedent/pattern a using a standard frequent pattern mining
algorithm, e.g., FP-growth [13], and then finding the corresponding consequent cat-
egorical distribution Θ̂a given the dataset, i.e., using the maximum likelihood estim-
ate of Eq. (2.9). In practice, these mining algorithms have only two parameters: the
minimum support threshold nmin. and the maximum length dmax of a pattern.

Mining frequent patterns can be done efficiently due to the anti-monotone property
of their support, i.e., given a pattern a and b, if a has fewer conditions then b, i.e.,
a ⊂ b, implies that na ≥ nb. This property is also used to remove strictly redundant
rules in CLASSY.
Given all candidates from the frequent pattern mining algorithm, if antecedent a is a
strict subset of antecedent b, i.e., a ⊂ b, and they have equal support, na = nb, we
say that antecedent b is redundant and will never be selected. This is a consequence
of their encoding, i.e., as Y a = Y b =⇒ Lplug−in(Y a) = Lplug−in(Y b) in the case
they are being considered for the same position, and that the model encoding length
of b will always be larger than a, i.e., L(a) < L(b). From this, we can conclude that b
will never be preferred over a during the model search, as the gain of a will always
be greater.

4.2.4 Finding good rule lists

We are now ready to introduce CLASSY, a greedy algorithm for finding good solutions
to the MDL-based multiclass classification problem as formalized in Section 3.4. The
algorithm, outlined in Algorithm 4.1, expects as input a (supervised) training dataset
D and a set of candidate patterns, e.g., a set of frequent itemsets mined from D, and
returns a predictive rule list.
The first step of our algorithm is to remove the strictly redundant patterns as men-
tioned in Section 4.2.3 (Ln 1). After that, we initialize the predictive rule list with the
default rule (Ln 2), which acts as the baseline model to start from. Then, while there
is a predictive rule that improves compression (Ln 7), we keep iterating over three
steps: 1) we select the best rule to add (Ln 4)—we here use normalized gain for ease
of presentation, but this can be trivially replaced by absolute gain; 2) we add it to the
rule list (Ln 5); and 3) we update the usage, and gain of the candidate list (Ln 6). To
update the usage of a candidate it is necessary to remove from its usage the instances
that it has in common with the previously added rule, and then the gain of adding
the candidate can be updated. When no rule improves compression (negative gain)

66 4.2. The CLASSY algorithm

the while loop stops and the rule list is returned.

Algorithm 4.1 The CLASSY algorithm

Input: Dataset D, candidate set Cands
Output: Multiclass probabilistic rule list R

1: Cands← RemoveRedundancy(Cands)

2: RL← [∅]

3: repeat
4: ρ← arg max∀r′∈Cands : δL(D,RL⊕ ρ′)
5: RL← RL⊕ ρ
6: UpdateCandidates(D,RL,Cands)

7: until δL(D,RL⊕ ρ′) ≤ 0,∀ρ′ ∈ Cands
8: return RL

4.2.5 Time and space complexity

In this section we analyze the time and space complexity of CLASSY. In terms of time
complexity, CLASSY can be divided into two parts: 1) an initialization step, and 2) an
iterative loop where one rule is added to a predictive rule list in each iteration.

Initialization step. The time complexity of the initialization step is dominated by
sorting the candidates (ascending by length) obtained after running the frequent
pattern mining algorithm, and the computation of their instance ids, i.e., the in-
dexes of the instances where each candidate is present. Sorting all candidates takes
O(|Cands| log |Cands|) time. To compute the instance ids of the candidates, CLASSY

first computes the presence of each singleton condition, i.e., xi = 1 is tested for each
variable, in each instance, and then stores them as a bitset in a hash table. As this is
done for the whole dataset, it takes O(|D||V |) time. Then, for candidates of size equal
or greater than two and given a sorted array of candidates, it sequentially computes
the instance ids of each candidate a based on its decomposition in two candidates of
one less condition, i.e., it computes the ids of a based on two candidates b1 and b2
for which b1 ∪ b2 = a of length |b1| = |b2| = |a| − 1. The ids of a are obtained by
the intersection of the sets of instance ids of the smaller length candidates and has a
complexity of O(|(b1)ids|+ |(b2)ids|). As this is done for each class, in the worst case,
it would cover the whole dataset, and it would take O(|D| + |D|). Doing this for all
candidates gives O(|Cands||D|).

Iterative loop. After the initialization step, CLASSY iteratively finds the best rule to
add for a total of ω = |R| runs, where RL is the predictive rule list that CLASSY

Chapter 4. Discovering predictive rule lists with CLASSY 67

outputs at the end. The time complexity of this loop is dominated by the removal of
the instance ids that all candidates have in common with the last added rule. Using
again the fact that the intersection of instance ids is upper bounded by the dataset
size |D|, the removal of instance ids takes at most O(|R||Cands||D|) time. Given that
the rule list can grow at most to the size of the dataset, an upper bound on this
complexity is O(|Cands||D|2). Joining everything together, CLASSY has a worst-case
time complexity of

O(|Cands||D|2),

which is really a worst-case scenario, because, in general, MDL will obtain predict-
ive rule lists that are much smaller than the dataset size, i.e., |R| � |D|, making it
possible to treat it as a constant. Making this assumption, we obtain a more realistic
worst case time complexity of

O(|Cands| log |Cands|+ |Cands||D|).

Note that the time complexity associated with the Gamma function used in the com-
putation of lengths (3.14) and gains (4.4) of data encoding is not problematic when
compared with the other terms. This is due to its recursive computation for |D| val-
ues, which can be stored in a dictionary. In total, this takes O(multi(|D|) + |D|) time,
where multi(∗) is the complexity of the multiplication used; in the case of our Python
implementation, this is the Katsuraba multiplication. From then on, the lookup of a
value only takes O(1) time.

Memory complexity. In terms of memory complexity, CLASSY has to store for each
candidate for each class: their instance ids O(|(a)ids||Y|), their support O(|Y|), and
their score O(|Y|). It is easy to see that |(a)ids||Y| is upper bounded by the dataset
size |D| and that all other memory requirements will be dominated by this part. Also,
the storage of the gamma function for each integer up to |D| is only O(|D|), which
gets dwarfed by the instance storage, thus obtaining a worst-case memory complexity
of

O(|D||Cands|).

4.3 Empirical evaluation

In this section we empirically evaluate our approach2, first in terms of its sensitivity
to the candidate set provided and the relationship between compression and classific-
ation performance, and second in comparison to a set of representative, state-of-the-
art baselines in terms of classification performance, interpretability, overfitting, and

2For the reproducibility of the experiments, please check https://github.com/HMProenca/

MDLRuleLists

https://github.com/HMProenca/MDLRuleLists
https://github.com/HMProenca/MDLRuleLists

68 4.3. Empirical evaluation

runtime.

Data. We use 17 varied discretised datasets (see Table F.1) from the LUCS/KDD3 re-
pository, all of which are commonly used in classification papers. They were selected
to be diverse, ranging from 150 to 48 842 samples, from 16 to 157 Boolean variables,
and from 2 to 18 classes.

Candidate rules generation. Frequent pattern mining algorithms generate different
candidate sets by setting different values for the minimum support per class threshold
nmin and maximum pattern length dmax. To demonstrate that CLASSY is insensitive
to the exact settings of these parameters, we fix a single set of parameter values
for all experiments on all datasets (except when we investigate the influence of the
candidate set). Specifically, we use dmax = 4 and nmin = 5%, to obtain a desirable
trade-off between candidate set size, convergence, and runtime.

These values were objectively derived based on two criteria: making each run finish
within 10 minutes while demonstrating that CLASSY can deal with large candidate set
sizes. First, we chose dmax = 4 because this potentially results in very large candidate
sets with many redundant rules (i.e., rules that are very similar / strongly overlap-
ping). We then fixed nmin by requiring the runs for all datasets to strictly finish in
under 10 minutes and for most datasets even under 1 minute, to be comparable to
CART , C5.0, and JRip in runtime, and also to have attained (empirical) convergence
in terms of compression ratio on the training set—further lowering nmin would not
increase compression—as can be seen from the vertical dashed lines in Figure 4.3.

Candidate patterns are mined using Borgelt’s implementation of the well-known fre-
quent pattern mining algorithm FP-growth [13]. The same candidate set was used for
all experiments except when assessing its influence on CLASSY in Section 4.3.2. For
that experiment we fixed dmax = 4 and varied the minimum support threshold per
class from nmin = {0.1%, 0.5%, 1%, 2%, 5%, 10%, 15%, 20%, 25%}.

Evaluation criteria. We evaluate and compare our approach based on classification
performance, overfitting, interpretability, and runtime. Besides, we assess the influ-
ence of the candidate set on our algorithm and whether better compression corres-
ponds to better classification. All results presented are averages obtained using 10

times repeated 10-fold cross-validation (with different seeds).

MDL criterion quantification. To quantify how well a predictive rule list compresses
the class labels and be able to compare the MDL score across datasets, we define

3http://cgi.csc.liv.ac.uk/~frans/KDD/Software/LUCS-KDD-DN/DataSets/dataSets.html

http://cgi.csc.liv.ac.uk/~frans/KDD/Software/LUCS-KDD-DN/DataSets/dataSets.html

Chapter 4. Discovering predictive rule lists with CLASSY 69

relative compression as

L% =
L(D,R)

L(D | Θ̂d)
, (4.5)

where L(D | Θ̂d) is the encoding length of the data given the predictive rule list with
only a default rule, i.e., with only the dataset priors for each class. We measure relat-
ive compression on the training data, as we use that for model selection.

Classification performance. Classification performance is measured using three meas-
ures presented in Section 2.5: accuracy; balanced accuracy [17]; and Area Under the
ROC Curve (AUC). Each measure portrays different aspects of the classifier perform-
ance. Accuracy shows the total number of correct classifications. Balanced accuracy,
or averaged class accuracy, takes into account the imbalance of class distributions in
the dataset and gives the same importance to each class.

AUC, on the other hand, is not based on a fixed threshold and takes into account the
probabilities associated with each prediction. In the case of multiclass datasets, we
use weighted AUC [102], as it takes into account the class distribution in the dataset.

Interpretability. For interpretability, we follow the most commonly used measure, i.e.,
that smaller models are easier to understand [26]. With this in mind, we assess: the
number of rules and the number of conditions per rule; in all cases, fewer is better.
When analyzing decision trees, the number of leaves is given as the number of rules
(which includes the default rule), and the average depth of the leaves (except for
the longest—assumed the default rule) is given as the number of conditions per rule.
Although predictive rule lists derived from decision trees can often be simplified, we
here choose not to do this because these directly measures how it would be read by
humans.

Overfitting. Overfitting is measured in terms of the absolute difference between the
AUC performance in the training set and in the test set.

Runtime. For runtime, wall clock time in minutes is measured; no parallelization was
used.

Note on standard deviations. Given that the number of values reported both in
figures and tables is large, and that standard deviations are usually 2+ orders of
magnitude smaller than their corresponding averages, we choose not to report them—
to avoid unnecessarily cluttering the presentation. We did analyse them though and
explicitly comment on the few cases where relevant.

70 4.3. Empirical evaluation

Figure 4.2: Relation between compression and AUC; better compression on the train-
ing set (lower relative compression) corresponds to better classification on the test
set (higher AUC). Results obtained with CLASSY using normalized (squares) and ab-
solute (circles) gain, on all 17 datasets; each point represents the 10 times repeated
10-fold average for one dataset with one type of gain; each connected pair represents
the same dataset, for the two types of gain.

4.3.1 Compression versus classification

We first investigate the effect of using absolute (4.1) or normalized gain (4.4). To this
end, Figure 4.2 depicts how the two heuristics perform for relative compression (on
the training set) and AUC (on the test set).
The first observation is that better compression of the training data corresponds to
better classification performance on the test data. This is backed by a correlation
of −0.92 and a corresponding p-value lower than 0.0001 for the independence test
between both variables for the normalized gain data. This is a crucial observation,
as it constitutes an independent, empirical validation of using the MDL principle for
predictive rule list selection. Moreover, it also shows that MDL successfully protects
against overfitting: using normalized gain leads to models that not only compress the
training data better but also provides accurate predictions on the test data.
The second observation is that normalized gain performs better overall than absolute
gain: AUC is higher in 15 out of 17 cases and relative compression is lower or equal
in 11 out of 17 times. This confirms that normalized gain is, as we hypothesized, the
best choice. We will therefore use normalized gain for the remaining experiments.

Chapter 4. Discovering predictive rule lists with CLASSY 71

4.3.2 Candidate set influence

In this set of experiments, we study the influence of the candidate set on CLASSY,
which technically is its only “hyperparameter”, as it is the only part that can influ-
ence its output given the same dataset. In order to vary the candidate set objectively,
the minimum support threshold ranges over nmin. = {0.1%, 0.5%, 1%, 2%, 5%, 10%,

15%, 20%, 25%} and the maximum pattern length was fixed at dmax = 4, allowing the
generation of large candidate sets.

0 5 10 15 20 25
minimum support threshold (%)

102

103

104

105

106

ca
nd

id
at

e
se

t s
ize

hepatitis
ionosphere
horsecolic
cylBands
breast
pima
tictactoe
mushroom
adult
iris
wine
waveform
heart
pageblocs
led7
pendigits
chessbig

(a) candidate set size

0 5 10 15 20 25
minimum support threshold (%)

10 3

10 2

10 1

100

101

ru
nt

im
e

(m
in

.)

hepatitis
ionosphere
horsecolic
cylBands
breast
pima
tictactoe
mushroom
adult
iris
wine
waveform
heart
pageblocs
led7
pendigits
chessbig

(b) runtime

The results can be seen in the set of Figures 4.3, which show the influence of the can-

72 4.3. Empirical evaluation

0 5 10 15 20 25
minimum support threshold (%)

0.0

0.2

0.4

0.6

0.8

1.0
re

la
tiv

e
co

m
pr

es
sio

n
hepatitis
ionosphere
horsecolic
cylBands
breast
pima
tictactoe
mushroom
adult
iris
wine
waveform
heart
pageblocs
led7
pendigits
chessbig

(c) compression in training set

0 5 10 15 20 25
minimum support threshold (%)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

AU
C

hepatitis
ionosphere
horsecolic
cylBands
breast
pima
tictactoe
mushroom
adult
iris
wine
waveform
heart
pageblocs
led7
pendigits
chessbig

(d) AUC in test set

didate set on CLASSY through: the size of candidates mined in Figure 4.3a; runtime
in Figure 4.3b; compression on the training set in Figure 4.3c; AUC in the test set in
Figure 4.3d; and the number of rules in a rule list in Figure 4.3e.

Minimum support. Figure 4.3a shows the growth of the candidate set size with the
minimum support threshold used, and that, as expected, its growth is exponential
with the change in minimum support. Figure 4.3b shows that in general, the runtime
increases at a rate similar to the increase in candidate size of Figure 4.3a. This follows
our analysis of time complexity in Section 4.2.5, which tells us that the time complex-
ity of CLASSY grows proportionally to the dataset size times the candidate set size,

Chapter 4. Discovering predictive rule lists with CLASSY 73

0 5 10 15 20 25
minimum support threshold (%)

101

102

nu
m

be
r o

f r
ul

es
hepatitis
ionosphere
horsecolic
cylBands
breast
pima
tictactoe
mushroom
adult
iris
wine
waveform
heart
pageblocs
led7
pendigits
chessbig

(e) number of rules

Figure 4.3: Influence of the minimum support threshold on {candidate set size;
runtime (in minutes); relative compression on the training set; AUC in the test set;
number of rules} for a maximum rule length of 4 and a minimum support threshold
per class of nmin. = {0.1%, 0.5%, 1%, 2%, 5%, 10%, 15%, 20%, 25%}. The values were
averaged over 10 times repeated 10-fold crossvalidation and each dataset is connec-
ted by a line to aid visualization. The vertical dashed line represents the selected
minimum support of 5% used in the experiments section for predictive rule lists (Sec-
tion 4.3).

thus, given a fixed dataset size it becomes proportional only to the candidate set size.
Compression and classification. Figures 4.3c and 4.3d show how CLASSY performs
in classification in terms of compression in the training set and AUC in the test set,
respectively. The values for both plots remain constant for most cases, and when a
value deteriorates in terms of compression (increase in compression ratio) for smaller
candidate sets, it also deteriorates accordingly in terms of AUC (decrease in AUC) in
the test set.
We make two important observations: 1) the minimum in compression is achieved at
the minimum support used for 13 out of 17 datasets, and in the cases where it does
not happen the difference in relative compression is below 1%, which tells us that
CLASSY can find a good description of the data using large candidate sets, without too
greedily using rules that only cover few instances; 2) the minimum in compression
and maximum in AUC are achieved for the same support value for 12 out 17 cases,
and in the other cases, the difference is usually smaller than 2% in both measures,
revealing the robustness of our MDL formulation at obtaining models that generalize
well. The main exception is ionosphere, where the best AUC is found at the minimum

74 4.3. Empirical evaluation

support threshold of 10%, while the lowest threshold finds a predictive rule list with
3% lower AUC, without almost any change in compression. This can be explained by
the relatively small number of examples of ionosphere (351 instances) combined with
its peculiar structure.

Number of rules. Figure 4.3e shows the number of rules selected based on the can-
didate set. As expected, the number of rules selected only decreases or remains con-
stant with the candidate set, except for mushroom. Upon closer inspection, we observe
that this is due to the disappearance of a rule with good performance but low cover-
age from the candidate set, which has to be replaced by a combination of other rules.
The cases where many more rules are selected for lower minimum support thresholds,
such as chessbig and adult, have lower compression and higher AUC values for these
large number of rules, which makes these selections sustainable.

4.3.3 Classification performance

We now compare the classification performance of CLASSY to Scalable Bayesian Rule
Lists (SBRL) [125], JRip4, FURIA4, CART5, C5.06, and Support Vector Machines7

(SVM). These methods are state-of-the-art classifiers, and SBRL, CART, C5.0, JRip,
and FURIA—a fuzzy unordered rule induction algorithm—are clearly related to our
approach. C5.0 is a newer version of C4.5, and JRip is a Java-implementation of RIP-
PER.

Hyperparameters tuning. CLASSY has no hyperparameters apart from the candidate
set, which was generated using FP-growth with nmin = 5% and dmax = 4 for each
dataset (as described at the beginning of Section 4.3). We tuned CART by selecting
the best performing model on the training set from the models generated with the
following complexity parameters: {0.001; 0.003; 0.01; 0.03; 0.1}. The same was done
for C5.0, with confidence factors: {0.05; 0.15; 0.25; 0.35; 0.45}. The SVM, with the ra-
dial kernel, was tuned using 3-fold cross-validation and a grid search on γ = {2−6:0}
and c = {2−4:4} within the training set. JRip and FURIA were tuned by setting their
hyperparameters to 3 folds, a minimum weight of 2, and 2 optimization runs.
SBRL was trained using the guidelines provided by the authors [125]: the number of
chains was set to 25; iterations to 5000; η, representing the average size of patterns
in a rule, to 1; and λ, representing the average number of rules, to 5. The algorithm
was first run on the training set and then re-run with λ changed to the number of

4 https://cran.r-project.org/package=RWeka
5https://cran.r-project.org/package=rpart
6https://cran.r-project.org/package=C50
7https://cran.r-project.org/package=e1071

https://cran.r-project.org/package=RWeka
https://cran.r-project.org/package=rpart
https://cran.r-project.org/package=C50
https://cran.r-project.org/package=e1071

Chapter 4. Discovering predictive rule lists with CLASSY 75

predictive rules obtained. In an attempt to follow their guidelines to use around 300

candidate rules, minimum and maximum itemset length were set to 1 and 2 (or 3

if possible) respectively, while the minimum threshold for the negative and posit-
ive classes was set to one of {5%, 10%, 15%}. Note that we initially attempted a fair
comparison by using the same candidates for SBRL as for CLASSY, but due to the lim-
itations on the number of rules that SBRL could practically handle this, unfortunately,
turned out to be infeasible.

Analyse of results. The results are presented in Table 4.2. The SVM models achieve
the best ranking overall, but they do not belong to the class of interpretable models.
CLASSY performs on par with most tree- and rule-based models in terms of accuracy
and balanced accuracy, worst than FURIA for these two measures, and better than
these in terms of AUCs for multiclass datasets. The better performance of FURIA can
be explained by the fact that it uses fuzzy rule sets rather than probabilistic rule lists;
this allows for multiple rules to be activated and aggregated for a single classifica-
tion, which improves predictive performance but makes interpretability less straight-
forward. This also means that the number of rules and conditions cannot be directly
compared: a FURIA rule set consisting of 5 rules translates to up to 32 unique rules in
the rule list setting. Further, FURIA does not provide probabilistic predictions, unlike
our approach.
Comparing to other predictive rule list models, such as SBRL and JRip, CLASSY per-
forms better for most of the measures used. When viewed against the tree-based
models, we can see that our method performs on par with CART for most measures
and slightly worse than C5.0, except for AUC in the multiclass scenario. Also, as we
will show later, C5.0 tends to obtain equivalent rule lists that are much bigger than
the ones produced by CLASSY, which makes them perform better in general (but not
always).

4.3.4 Interpretability

The results are shown in Table 4.3, where we use AUC, the number of rules, and the
number of conditions to compare the trade-off between AUC and model complexity of
the tree- and rule-based models. Note that we choose AUC for predictive performance
as it agrees with our goal of using the probabilities output of CLASSY to explain the
decisions made. Also, note that we intentionally removed FURIA from the rankings of
the number of rules and conditions as its models are rule sets—not rule lists.
For binary datasets, CLASSY is in a middle-ranking, better than SBRL and JRip, and
worst than CART, C5.0, and FURIA. On the other hand, in multiclass datasets, it
achieves a much lower (=better) ranking than all the other algorithms.

76 4.3. Empirical evaluation

Table
4.2:

C
lassification

perform
ance

average
results

(10
tim

es
repeated

10-fold
cross-validation)

m
easured

through
{accuracy;balanced

accuracy;A
rea

U
nder

the
R

O
C

C
urve

(A
U

C
)

(w
eighted

A
U

C
for

m
ulticlass

datasets)},per
dataset{binary;m

ulticlass}
for

each
algorithm

.
A

t
the

bottom
of

the
binary

and
m

ulticlass
datasets

the
average

rank
of

the
algorithm

for
each

is
presented.The

rank
of

1
is

given
for

the
best

value
(highest

classification
perform

ance)
and

7
and

6
for

the
w

orst
in

binary
and

m
ulticlass,respectively.N

ote
that

SB
R

L
cannot

do
m

ulticlass
classification,hence

only
being

present
in

the
binary

ranking
and

the
blank

spaces.

A
ccuracy

B
alanced

accuracy
A

U
C

datasets
C

LA
S

S
Y

SB
R

L
JR

ip
C

A
R

T
C

5.0
FU

R
IA

SV
M

C
LA

S
S

Y
B

R
L

JR
ip

C
A

R
T

C
5.0

FU
R

IA
SV

M
C

LA
S

S
Y

B
R

L
JR

ip
C

A
R

T
C

5.0
FU

R
IA

SV
M

hepatitis
0
.8

3
0
.7

8
0
.7

9
0
.7

9
0
.7

9
0
.7

9
0
.8

3
0
.6

6
0
.5

9
0
.6

5
0
.6

7
0
.6

5
0
.6

1
0
.7

0
0
.6

7
0
.6

2
0
.6

4
0
.7

2
0
.6

8
0
.7

0
0
.8

5

ionosphere
0
.8

9
0
.8

8
0
.9

0
0
.9

1
0
.9

0
0
.9

0
0
.9

2
0
.8

7
0
.8

6
0
.8

9
0
.8

9
0
.8

9
0
.8

8
0
.9

1
0
.8

8
0
.8

8
0
.8

9
0
.9

2
0
.9

2
0
.9

1
0
.9

6

horsecolic
0
.8

0
0
.8

4
0
.8

1
0
.8

3
0
.8

3
0
.8

3
0
.8

4
0
.7

8
0
.8

2
0
.8

0
0
.8

1
0
.8

2
0
.8

1
0
.8

2
0
.8

2
0
.8

3
0
.8

1
0
.8

5
0
.8

5
0
.8

4
0
.8

8

cylB
ands

0
.7

0
0
.6

8
0
.7

3
0
.7

3
0
.7

4
0
.7

6
0
.8

1
0
.6

5
0
.6

5
0
.7

2
0
.7

1
0
.7

3
0
.7

4
0
.8

0
0
.7

0
0
.7

3
0
.7

4
0
.7

8
0
.7

8
0
.7

9
0
.8

8

breast
0
.9

3
0
.9

4
0
.9

3
0
.9

3
0
.9

4
0
.9

4
0
.9

4
0
.9

4
0
.9

5
0
.9

4
0
.9

4
0
.9

5
0
.9

5
0
.9

5
0
.9

4
0
.9

5
0
.9

6
0
.9

5
0
.9

5
0
.9

5
0
.9

6

pim
a

0
.7

3
0
.7

4
0
.7

3
0
.7

3
0
.7

3
0
.7

4
0
.7

4
0
.6

6
0
.6

9
0
.6

8
0
.6

7
0
.6

7
0
.6

8
0
.6

7
0
.7

0
0
.6

9
0
.6

8
0
.7

1
0
.6

9
0
.6

8
0
.7

5

tictactoe
0
.9

8
0
.8

1
0
.9

8
0
.9

2
0
.9

4
0
.9

9
0
.9

9
0
.9

8
0
.7

5
0
.9

7
0
.9

1
0
.9

3
0
.9

8
0
.9

9
0
.9

8
0
.8

6
0
.9

7
0
.9

7
0
.9

8
1
.0

0
1
.0

0

m
ushroom

1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0

adult
0
.8

5
0
.8

5
0
.8

5
0
.8

5
0
.8

5
0
.8

0
0
.8

6
0
.7

5
0
.7

5
0
.7

4
0
.7

5
0
.7

6
0
.7

4
0
.7

6
0
.8

9
0
.8

8
0
.7

4
0
.8

8
0
.8

7
0
.7

6
0
.8

6

rank
4
.4

4
.6

4
.8

4
.9

4
.1

3
.3

1
.9

4
.9

4
.3

4
.4

4
.7

3
.6

3
.8

2
.3

4
.6

4
.8

5
.4

3
.9

3
.8

3
.8

1
.7

iris
0
.9

5
0
.9

4
0
.9

3
0
.9

3
0
.9

3
0
.9

4
0
.9

5
0
.9

4
0
.9

3
0
.9

3
0
.9

3
0
.9

4
0
.9

7
0
.9

7
0
.9

7
0
.9

7
0
.9

5
0
.9

9

w
ine

0
.8

9
0
.8

8
0
.8

7
0
.8

9
0
.9

3
0
.9

5
0
.9

0
0
.8

9
0
.8

7
0
.9

0
0
.9

2
0
.9

5
0
.9

5
0
.9

3
0
.9

3
0
.9

5
0
.9

6
1
.0

0

w
aveform

0
.7

5
0
.7

7
0
.7

6
0
.7

6
0
.7

8
0
.8

0
0
.7

5
0
.7

7
0
.7

6
0
.7

6
0
.7

8
0
.8

0
0
.9

1
0
.8

7
0
.9

0
0
.9

0
0
.8

6
0
.9

4

heart
0
.5

6
0
.5

4
0
.5

7
0
.5

4
0
.5

7
0
.5

9
0
.3

0
0
.2

2
0
.3

1
0
.3

0
0
.2

7
0
.3

0
0
.7

4
0
.5

4
0
.7

6
0
.7

2
0
.6

9
0
.8

4

pageblocs
0
.9

3
0
.9

3
0
.9

3
0
.9

2
0
.9

2
0
.9

3
0
.5

1
0
.5

2
0
.5

2
0
.4

8
0
.5

2
0
.5

2
0
.7

4
0
.7

2
0
.7

4
0
.6

9
0
.7

3
0
.7

2

led7
0
.7

4
0
.7

2
0
.7

5
0
.7

5
0
.7

4
0
.7

6
0
.7

4
0
.7

2
0
.7

5
0
.7

5
0
.7

4
0
.7

6
0
.9

4
0
.9

2
0
.9

4
0
.9

4
0
.8

8
0
.9

5

pendigits
0
.9

2
0
.9

5
0
.9

2
0
.9

6
0
.9

7
0
.9

8
0
.9

2
0
.9

5
0
.9

2
0
.9

6
0
.9

7
0
.9

9
0
.9

9
0
.9

8
0
.9

9
1
.0

0
0
.9

9
1
.0

0

chessbig
0
.5

0
0
.5

2
0
.4

9
0
.7

8
0
.6

2
0
.9

3
0
.4

4
0
.6

1
0
.4

1
0
.8

1
0
.6

7
0
.9

2
0
.9

0
0
.8

1
0
.8

7
0
.9

6
0
.6

7
1
.0

0

rank
4
.0

3
.4

3
.2

2
.6

1
.6

1
.1

4
.1

4
.4

4
.1

4
.1

3
.2

1
.3

2
.6

5
.1

3
.8

3
.4

4
.6

1
.5

Chapter 4. Discovering predictive rule lists with CLASSY 77

CLASSY tends to find more compact models, with a similar number of rules and fewer
logical conditions in total, than C5.0, CART, and JRip, that are as accurate or better
than these. This can be seen by its average rank of 2 and 1.9 for rules and 1.7 and 1.5

for the total number of conditions, for binary and multiclass datasets respectively. It
also can be seen that for most datasets it obtained the lowest number of conditions of
all tree- and rule-based classifiers. Although SBRL also finds very compact rule lists,
with a small number of rules and conditions, the low variance between the reported
values for the different datasets suggests that this strongly depends on the hyper-
parameter settings, which penalize too strongly the number of rules not around the
user-defined expected average number of rules. Indeed, the compact rule lists exhibit
subpar classification performance for some datasets (i.e., hepatitis and tictactoe). This
suggests that without additional (computation-intensive) tuning of these hyperpara-
meters, the recommended procedure for SBRL may lead to underfitting. As expected,
C5.0, with its tendency to maximize the classification performance as much as pos-
sible, tends to create overgrown models, such as the almost 3000 rules for chessbig,
that do not necessarily generalize well, such is the case in adult, where it obtained
the same number of rules as CLASSY but with a 2% lower AUC, and for pendigits were
it obtained a number of rules around 4 times higher than CLASSY and CART for the
same performance.

4.3.5 Statistical significance testing

To analyze whether the results of Tables 4.2 and 4.3 are statistically different [25], we
use two non-parametric multiple hypothesis tests, namely Friedman’s test [37] and
Iman and Davenport’s test [57], on the rankings of the algorithms.
The results can be seen in the left side of Table 4.4, which divides the datasets into
two groups, for binary and multiclass datasets respectively. The results show that
there are significant differences for most measures (significance level 0.05). The only
exceptions are balanced accuracy in the binary case, AUC of rule-based models in the
binary case, and the number of rules for the multi-class case.

For those cases where the null hypothesis—stating that the algorithms perform on
par—is rejected we proceed with a post-hoc Holm’s test [54] for pairwise comparisons
with CLASSY as control algorithm.
The results of these pairwise comparisons can be seen in the right side of Table 4.4.
For most of these tests the null hypothesis—stating that CLASSY and its competitor
perform on par—can not be rejected. This can be mostly explained by the relatively
small number of datasets; the power of the tests is not very high. We therefore can-
not draw strong conclusions from these results, but this is not necessarily a negative

78 4.3. Empirical evaluation
Table

4.3:
Interpretability

perform
ance

average
results

(10
tim

es
repeated

10-fold
cross-validation)

oftree-and
rule-based

m
odels

m
eas-

ured
through

{A
rea

U
nder

the
R

O
C

C
urve

(A
U

C
)

(w
eighted

A
U

C
for

m
ulticlass

datasets);
num

ber
of

rules;
num

ber
of

conditions
},

per
dataset{binary;m

ulticlass}
for

each
algorithm

.R
ank

gives
the

average
rank

ofeach
algorithm

for
binary

and
m

ulticlass
datasets.The

rank
of

1
is

given
for

the
best

value
(highest

A
U

C
or

low
est

num
ber

of
rules/conditions).

N
ote

that
SB

R
L

cannot
do

m
ulticlass

classification,
hence

only
being

present
in

the
binary

ranking
and

the
blank

spaces.
∗

The
num

ber
ofrules

and
conditions

used
by

FU
R

IA
are

presented
as

a
reference,as

they
are

notdirectly
com

parable
to

those
ofthe

other
m

ethods
as

they
form

rule
sets

(and
cannot

be
trivially

translated
to

rule
lists).FU

R
IA

w
as

therefore
also

not
included

in
the

rankings
of

those
criteria.

A
U

C
N

um
ber

ofrules
N

um
ber

ofconditions

datasets
C

LA
S

S
Y

SB
R

L
JR

ip
C

A
R

T
C

5.0
FU

R
IA

C
LA

S
S

Y
SB

R
L

JR
ip

C
A

R
T

C
5.0

FU
R

IA
C

LA
S

S
Y

SB
R

L
JR

ip
C

A
R

T
C

5.0
FU

R
IA

hepatitis
0
.6

7
0
.6

2
0
.6

4
0
.7

2
0
.6

8
0
.7

0
2

2
3

4
9

4
∗

1
2

5
6

3
8

7
∗

ionosphere
0
.8

8
0
.8

8
0
.8

9
0
.9

2
0
.9

2
0
.9

1
6

3
6

5
1
2

7
∗

4
4

9
1
0

5
8

1
2
∗

horsecolic
0
.8

2
0
.8

3
0
.8

1
0
.8

5
0
.8

5
0
.8

4
4

2
4

6
1
6

6
∗

3
2

7
1
0

7
6

9
∗

cylB
ands

0
.7

0
0
.7

3
0
.7

4
0
.7

8
0
.7

8
0
.7

9
5

3
7

2
0

5
9

1
1
∗

4
4

1
7

1
1
1

8
9
7

1
8
∗

breast
0
.9

4
0
.9

5
0
.9

6
0
.9

5
0
.9

5
0
.9

5
3

3
4

5
6

5
∗

3
5

1
1

1
3

1
5

1
3
∗

pim
a

0
.7

0
0
.6

9
0
.6

8
0
.7

1
0
.6

9
0
.6

8
3

2
3

1
0

1
1

2
∗

3
3

3
2
3

4
7

2
∗

tictactoe
0
.9

8
0
.8

6
0
.9

7
0
.9

7
0
.9

8
1
.0

0
9

6
1
0

2
4

4
2

1
0
∗

2
1

1
5

2
7

6
6

2
5
4

1
7
∗

m
ushroom

1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
6

5
5

8
9

8
∗

7
8

7
2
5

3
5

1
7
∗

adult
0
.8

9
0
.8

8
0
.7

4
0
.8

8
0
.8

7
0
.7

6
5
3

1
3

1
7

2
2

5
2

2
1
∗

1
1
4

2
5

8
1

1
0
6

6
3
0

3
4
∗

rank
3
.8

4
.0

4
.4

3
.0

2
.9

2
.9

2
.6

1
.1

2
.8

3
.7

4
.9

∗
1
.7

1
.7

2
.7

3
.9

5
.0

∗

iris
0
.9

7
0
.9

7
0
.9

7
0
.9

7
0
.9

5
3

3
3

3
2
∗

2
2

3
3

3
∗

w
ine

0
.9

5
0
.9

3
0
.9

3
0
.9

5
0
.9

6
5

5
5

8
4
∗

4
7

6
2
4

6
∗

w
aveform

0
.9

1
0
.8

7
0
.9

0
0
.9

0
0
.8

6
2
5

2
3

4
6

8
1

1
5
∗

6
5

1
0
8

1
2
5

6
8
3

3
3
∗

heart
0
.7

4
0
.5

4
0
.7

6
0
.7

2
0
.6

9
5

3
1
1

3
9

2
∗

4
6

2
8

2
9
9

2
∗

pageblocs
0
.7

4
0
.7

2
0
.7

4
0
.6

9
0
.7

3
1
3

8
1
0

9
3
∗

1
3

9
2
0

3
7

4
∗

led7
0
.9

4
0
.9

2
0
.9

4
0
.9

4
0
.8

8
2
0

1
9

2
9

2
8

3
∗

4
6

7
4

4
3

1
3
8

6
∗

pendigits
0
.9

9
0
.9

8
0
.9

9
1
.0

0
0
.9

9
7
8

1
0
7

6
6

2
6
6

7
4
∗

2
2
1

4
3
9

3
0

2
9
3
4

1
3
3
∗

chessbig
0
.9

0
0
.8

1
0
.8

7
0
.9

6
0
.6

7
1
9
5

4
1
8

1
1
8

2
8
7
4

2
8
1
∗

4
8
3

2
6
8
8

2
5

4
8
8
2
6

8
0
3
∗

rank
1
.8

4
.3

2
.9

2
.4

3
.8

2
.3

2
.0

2
.2

3
.5

∗
1
.5

2
.4

2
.1

4
.0

∗

Chapter 4. Discovering predictive rule lists with CLASSY 79

outcome: we aimed at showing that CLASSY performs as well as other rule- and tree-
based algorithms while obtaining simpler models. The results show that CLASSY does
use significantly fewer conditions than C5.0 for both multiclass and binary datasets,
and then CART for the binary case. Also, as expected the SVM obtained always better
results than CLASSY except for multiclass AUC. FURIA was better in terms of accuracy
but worse in terms of AUC.

4.3.6 Overfitting

To study overfitting, we compared the averages of the absolute difference between
the AUC values in the training and test set over 10 times repeated 10-folds for each al-
gorithm. The results can be seen in Table 4.5. In general, CLASSY together with SVM,
seem to be the most consistent algorithms in obtaining the lowest values. The usual
performance of CLASSY is 5% or lower, 12 out of 17 times, except in the case of hep-
atitis where it got 13%, which was the best value after SVM. SBRL is very consistent,
clearly achieving the lowest values for binary datasets, however, this can be explained
by its more conservative choice of rules and thus lower AUC on the test set as shown
in Table 4.2. Comparing with all rule- and tree-based models, CLASSY obtained the
lowest ranking for multiclass datasets, being, from these ones, the algorithm that less
overfits overall.

4.3.7 Runtime

All runtimes are averages over ten times repetitions of ten folds, run on a 64-bit
Windows Server 2012R2, with Intel Xeon E5-2630v3 CPU at 2.4GHz and 512GB
RAM. Runtimes include parameter tuning where applicable and candidate mining
for CLASSY and SBRL.
The results are depicted in Figure 4.4. CART, C5.0, JRip, and FURIA are the fastest,
with most runtimes under 1 minute with CLASSY being at a maximum one order
of magnitude slower. Comparing to SBRL, CLASSY is 10 times faster, even though it
considers around 100 times more candidates than this and performs better in terms
of AUC. The worst runtimes were obtained for SVM, due to its costly grid search.
It should be noticed that reducing the candidate set size of CLASSY would have an
exponential reduction in its runtimes without much deterioration of its classification
performance, as can be seen in Figures 4.3b and 4.3d.

4.3.8 Discussion

From the classification and interpretability results of Table 4.2 and 4.3, it can be seen
that CLASSY can provide a good trade-off between classification performance and rule

80 4.3. Empirical evaluation

Table
4.4:

Statistical
significance

testing
of

differences
betw

een
the

algorithm
s.

R
esults

for
Friedm

an
(χ

2
statistic),

and
Im

an
and

D
av-

enport
(F

statistic)
tests

for
all

the
m

easures
presented

in
Table

4.2
and

4.3
for

binary
and

m
ulticlass

datasets
w

ith
a

significance
level

of
0
.0

5.
In

case
the

null
hypothesis

for
the

differences
is

rejected,
the

post-hoc
H

olm
’s

procedure
is

used
for

pairw
ise

com
parisons

w
ith

C
LA

S
S

Y
as

control.
A
U
C
a
ll

is
the

A
U

C
com

parison
w

ith
allalgorithm

s
(SV

M
included)

of
Table

4.2
and

A
U
C
r
u
le
s

is
the

A
U

C
com

parison
ofalltree-and

rule-based
algorithm

s
(SV

M
excluded)

ofTable
4.3.

p
represents

the
p-value

obtained
for

each
specific

test,R
the

rejection
ofH

0 —
nullhypothesis.N

ote
that

not
allalgorithm

s
can

be
tested

for
allm

easures,thus
k

show
s

the
num

ber
ofalgorithm

s
tested

for
each

m
easure.

D
ifference

tests
H

olm
’s

post-hoc
procedure

(C
LA

S
S

Y
as

control)

Friedm
an

Im
an

and
D

avenport
SB

R
L

JR
ip

C
A

R
T

C
5.0

FU
R

IA
SV

M

M
easures

C
lasses

k
χ
2

p
H

0
F

p
H

0
p
H

0
p
H

0
p
H

0
p
H

0
p
H

0
p
H

0

A
cc

binary
7

1
3
.3

6
0
.0

3
8

R
2
.6

3
0
.0

2
8

R
0
.8

2
7

—
0
.7

0
3

—
0
.5

8
5

—
0
.7

4
3

—
0
.3

0
0

—
0
.0

1
4

R

m
ulti

6
1
7
.3

4
0
.0

0
4

R
5
.3

6
<

0
.0

0
1

R
0
.5

0
4

—
0
.3

8
5

—
0
.1

4
2

—
0
.0

0
9

R
0
.0

0
2

R

bA
cc

binary
7

8
.9

4
0
.1

7
7

—
1
.5

9
0
.1

7
1

—

m
ulti

6
1
5
.7

1
0
.0

0
8

R
4
.5

3
0
.0

0
3

R
0
.7

3
8

—
1
.0

0
0

—
1
.0

0
0

—
0
.3

5
0

—
0
.0

0
3

R

A
U
C

a
ll

binary
7

1
6
.0

0
0
.0

1
4

R
3
.3

7
0
.0

0
7

R
0
.8

2
7

—
0
.4

4
5

—
0
.3

0
0

—
0
.4

1
3

—
0
.4

1
3

—
0
.0

0
5

R

m
ulti

6
2
0
.0

0
0
.0

0
1

R
7
.0

0
<

0
.0

0
1

R
0
.0

0
8

R
0
.2

2
9

—
0
.4

2
3

—
0
.0

3
3

—
0
.2

2
9

—

A
U
C

r
u
le

s
binary

6
5
.7

0
0
.3

3
7

—
1
.1

6
0
.3

4
6

—

m
ulti

5
1
3
.1

0
0
.0

1
1

R
4
.8

5
0
.0

0
4

R
0
.0

0
2

R
0
.1

5
5

—
0
.4

2
9

—
0
.0

1
1

R

R
ules

binary
5

2
8
.1

8
<

0
.0

0
1

R
2
8
.8

2
<

0
.0

0
1

R
0
.0

5
3

—
0
.7

6
6

—
0
.1

3
6

—
0
.0

0
2

R

m
ulti

4
6
.6

4
0
.0

8
4

—
2
.6

8
0
.0

7
3

—

C
onditions

binary
5

2
9
.4

0
<

0
.0

0
1

R
3
5
.6

4
<

0
.0

0
1

R
1
.0

0
0

—
0
.2

0
5

—
0
.0

1
1

R
<

0
.0

0
1

R

m
ulti

4
1
6
.3

5
0
.0

0
1

R
1
4
.9

6
<

0
.0

0
1

R
0
.1

7
5

—
0
.3

3
3

—
<

0
.0

0
1

R

Chapter 4. Discovering predictive rule lists with CLASSY 81

Table 4.5: Overfitting average results (10 times repeated 10-fold cross-validation)
using the absolute difference between AUC performance in training and test sets as a
measure, per fold, for each algorithm and each dataset. Rank gives the average rank
of each algorithm for binary and multiclass datasets. Note that SBRL does not have
values for multiclass datasets.

|AUCtrain −AUCtest|

datasets CLASSY SBRL JRip CART C5.0 FURIA SVM

hepatitis 0.13 0.16 0.19 0.14 0.21 0.22 0.13

ionosphere 0.06 0.05 0.07 0.04 0.05 0.08 0.04

horsecolic 0.06 0.06 0.08 0.06 0.09 0.08 0.10

cylBands 0.07 0.06 0.09 0.11 0.18 0.13 0.12

breast 0.02 0.02 0.02 0.02 0.02 0.02 0.02

pima 0.06 0.05 0.05 0.06 0.07 0.05 0.05

tictactoe 0.01 0.03 0.01 0.02 0.02 0.00 0.00

mushroom 0.00 0.00 0.00 0.00 0.00 0.00 0.00

adult 0.01 0.00 0.01 0.00 0.01 0.01 0.03

rank 3.6 2.7 4.4 4.2 5.2 4.3 3.6

iris 0.02 0.02 0.02 0.02 0.04 0.01

wine 0.03 0.05 0.04 0.04 0.03 0.00

waveform 0.02 0.02 0.02 0.03 0.02 0.02

heart 0.05 0.04 0.07 0.15 0.04 0.06

pageblocs 0.00 0.00 0.00 0.00 0.00 0.00

led7 0.01 0.01 0.01 0.01 0.01 0.01

pendigits 0.00 0.01 0.00 0.00 0.01 0.00

chessbig 0.00 0.02 0.00 0.02 0.00 0.00

rank 2.4 4.8 4.4 4.1 3.6 1.8

list size. Particularly, in the case of multiclass datasets, such as chessbig, where clas-
sical algorithms like JRip find a model with double the number of rules, or in the case
of mushroom, where CART and C5.0 find more complex models with the same per-
formance. It is interesting to notice that CLASSY performs better in terms of AUC than
accuracy. This shows that when it makes a wrong prediction it does so with a small
probability, which is reassuring. Moreover, CLASSY has only one hyperparameter—its
candidate set—which its tuning is hardly needed as the algorithm has no problem in
dealing with large numbers of candidates. This is quite different from the extensive
tuning done for the other methods. It is important to observe that all methods except
for CLASSY were tuned.

82 4.3. Empirical evaluation

he
pa

titi
s

ion
osp

he
re

ho
rse

col
ic

cyl
Ban

ds
bre

astpim
a

tic
tac

toe

mush
roo

m
ad

ult iriswine

wav
efo

rm
he

art

pa
ge

blo
cs led

7

pe
nd

igit
s

che
ssb

ig

datasets

10 3

10 2

10 1

100

101

102

103
ru

nt
im

e
(m

in
.)

Classy
SBRL
CART
C5.0
JRip
FURIA
SVM

Figure 4.4: Average runtime per fold in minutes for each algorithm and each dataset.
The datasets are ordered first by the number classes and then by number of samples
(ascending). The vertical dashed line separates binary (to the left) from multiclass
datasets. Note that SBRL does not have a runtime for multiclass datasets.

Candidate set influence. In the set of Figures 4.3, it is shown that larger candidate
sets do not result in worse models, as our formalization in terms of the MDL principle
is well-suited to avoid overfitting without the need for cross-validation and/or para-
meter tuning. In other words, CLASSY is insensitive to its only hyperparameter—its
candidate set—making it virtually parameter-free. This is a big advantage, as one can
simply run CLASSY on all training data with as many candidates as possible, without
worrying about any parameters. It also means that all training data can be used for
training, which is important in the case of small data: no data needs to be reserved
for validation.

Compression and classification. From Figure 4.2 we can observe that better com-
pression corresponds to better classification, which is a strong empirical validation
of our formalization. As expected, the normalized gain is the best heuristic to use in
combination with our greedy rule selection strategy, as it results in better classifiers
for 88% of the datasets.

Chapter 4. Discovering predictive rule lists with CLASSY 83

Runtime. From the runtimes of Figure 4.4, it can be seen that CLASSY runtimes are
slower by an order of magnitude than other (fast) algorithms, such as C5.0, CART,
and JRip, and similar to SBRL. This is expected for the size of candidate sets used in
our experiments, as can be seen in Table F.1.

Classification and interpretability. In terms of classification and interpretability,
comparing the average ranking with other rule- and tree-based methods in Table 4.3,
it is shown that CLASSY performs equally well while also able to find rule lists with
fewer conditions, without any parameter tuning. CART creates models with fewer rules
that have more conditions per rule, while C5.0 has a high AUC at the expense of
over-complex rules. FURIA has a better performance in terms of both standard and
balanced accuracy, and worst in terms of AUC, which is expected as it is not a prob-
abilistic classifier. Also, it is hard to compare its interpretability as all its rules can
interact with each other, generating a much larger equivalent rule list than CLASSY.
SBRL on the other hand seems to be able to find simple models that underperform in
terms of AUC compared with CLASSY, which can be either a result of its formalization
or because it cannot use larger candidate sets.
The experiments also revealed that the Poisson distribution used as prior in SBRL, for
the number of conditions per rule and the number of rules, creates tight constraints
from which the results hardly deviate. Our results suggest that if the ‘optimal’ val-
ues for these hyperparameters are not known in advance, the best model may not be
found. An indicative example of this is the tictactoe dataset in Table 4.2, a determ-
inistic dataset for which SBRL can only find the right amount of rules and logical
conditions per rule when given these exact values in advance. The results obtained
with CLASSY demonstrate that using the universal prior for integers alleviates this
strong dependence on hyperparameter tuning.

Overfitting. In terms of overfitting, Table 4.5 shows that CLASSY tends to select mod-
els that generalize well and that are not overconfident in the training set. It obtains
low differences between training and test compared with the other rule- and tree-
based models.

4.4 Conclusions

We proposed CLASSY, a heuristic algorithm that finds good probabilistic rule lists
for multiclass classification by greedily approximating our MDL-based formulation of
the problem. CLASSY naturally trades off model complexity with predictive accuracy,

84 4.4. Conclusions

effectively avoiding overfitting with very few hyperparameters.
We empirically demonstrated, on a variety of datasets, that CLASSY finds predictive
rule lists that perform on par with state-of-the-art interpretable classifiers for pre-
dictive accuracy, even though some form of hyperparameter tuning is done for all
methods except for CLASSY. Moreover, the models found by our approach are more
compact than those obtained by the other methods, which we expect to make them
more understandable in practice. Finally, we show that compression strongly correl-
ates with predictive accuracy, which can be regarded as an empirical validation of the
MDL-based selection criterion.

Limitations. The CLASSY algorithm is restricted to discretized input variables and
multiclass problems. Most machine learning problems in tabular data involve a mix of
binary, nominal and numeric input variables. Nonetheless, the formulation for those
problems is available in Chapter 3, and one could directly use the RSD algorithm of
Chapter 5 for multiclass problems. However, extending it to regression would require
adaptations of the greedy gain used, as the problem is not as well defined as classific-
ation. In terms of statistical properties, and contrary to RSD, each rule added to the
list per iteration does not minimize a specific statistical test, except decreasing the
overall MDL score.

5
Discovering subgroup lists with RSD

In this chapter1, we propose the Robust Subgroup Discoverer (RSD) algorithm based
on the MDL formulation of subgroup lists proposed in Chapter 3. This algorithm uses
a greedy heuristic to finding good subgroups and can be applied to supervised tab-
ular datasets with univariate and multivariate, nominal and numeric targets. To val-
idate it, we conduct an empirical comparison on 54 datasets against state-of-the-art-
algorithms. This is complemented with two case studies of subgroup lists: 1) to de-
scribe the characteristics of hotel customers based on the time in advance they make
reservations; and 2) to describe how the social-economic background of Colombia
Engineering students is associated with their performance in university national ex-
ams.

Recapitulation of subgroup lists and their MDL formulation. In previous chapters
we defined what a subgroup list and its definition of optimality according to the
MDL principle are. We will now restate those definitions here. First, let us recall from
Chapter 2.4 the subgroup lists model in Figure 5.1.
The best subgroup list SL according to the MDL principle is the one that given the
dataset D minimizes the two-part code defined in Chapter 3.1:

SL∗ = arg min
SL∈SL

L(D,SL) = arg min
SL∈SL

[
L(Y | X, SL) + L(SL)

]
,

where L(SL) is the length of encoding the subgroup list model SL, and L(Y | X, SL)

is the length of encoding the target variables data given the subgroup list SL and the
explanatory variables X. The model encoding is the same for predictive rule lists and

1Parts of this chapter are based on Proença et al. [99, 100]

86

s1: IF a1 v x THEN y1 ∼ Dist(Θ̂1
1) · · · yt ∼ Dist(Θ̂1

t)
...

sω: ELSE IF aω v x THEN y1 ∼ Dist(Θ̂ω
1) · · · yt ∼ Dist(Θ̂ω

t)

default: ELSE y1 ∼ Dist(Θ̂d
1) · · · yt ∼ Dist(Θ̂d

t)

Figure 5.1: Generic subgroup list model SL with ω subgroups S = {s1, ..., sω} and
t (number of target variables) distributions per subgroup. Note that the parameters
of the default rule of a subgroup list Θ̂d = {Θ̂d

1, · · · , Θ̂d
t } are fixed to the marginal

distribution of the dataset, i.e., the overall category prior for categorical variables and
the dataset mean and standard deviation for numeric targets.

subgroup lists, as they only differ on how the default rule encodes the data and was
defined in Chapter 3.2 as

L(SL) = LN(|S|) +
∑
ai∈S

LN(|ai|) + log

(
m

|ai|

)
+
∑
v∈ai

L(v)

 ,
where S is the list subgroups in SL, i.e., the model excluding the default rule. Then,
depending on the type of target data the data encoding can vary. In the case of nom-
inal target variables, we use categorical distribution and the Normalized Maximum
Likelihood encoding defined in Chapter 3.4:

L(Y | X, SL) =

t∑
j=1

L(Y dj | Θd) +
∑
si∈S

LNML(Y ij)

 .

In the case of numeric target variables, we use categorical distribution and the Nor-
malized Maximum Likelihood encoding defined in Chapter 3.5:

L(Y | X, SL) =

t∑
j=1

L(Y dj | Θd) +
∑
si∈S

LBayes2.0(Y ij)

 .

Structure of the chapter. This chapter is divided as follows. First, in Section 5.1
the most relevant related work is covered, together with the main differences to our
approach. After that, in Section 5.2 RSD, a heuristic algorithm to mine subgroup
lists is defined, as well as its statistical guarantees and time complexity. Then, in
Section 5.3 we show the empirical results of our proposed method when compared
against the state-of-the-art algorithms for univariate and multivariate nominal and
numeric targets over 54 datasets. After that, in Section 5.4 we show a simple case

Chapter 5. Discovering subgroup lists with RSD 87

study of RSD applied to hotel bookings. Then, in Section 5.5 we apply RSD to discover
flight delays in an airline dataset. After that, in Section 5.6 we apply robust subgroup
discovery to find how descriptions of the socioeconomic background affect the grades
of engineering students in Colombia. Finally, in Section 5.7 the main conclusions are
presented.

5.1 Related work

In this section we cover work related to our proposed MDL subgroup lists, in three cat-
egories: subgroup discovery; pattern mining; MDL for pattern mining; and algorithmic
implementations. The relevance of each topic is as follows: subgroup discovery directly
relates to the task at hand; pattern mining and association rule mining are general-
izations of subgroup discovery; MDL for pattern mining shares the same theory for
formalizing the problem; and lastly we go over most of the same works but from an
algorithm implementation perspective to justify our algorithmic choices. Note that
predictive rule lists are also related as they share the same model structure as sub-
group lists and for more details on that we refer the interested reader to Chapter 4.

5.1.1 Subgroup discovery

In its traditional form, subgroup discovery, also referred to as top-k subgroup mining
[8], entails the mining of the k top-ranking subgroups according to a quality measure
and a number k selected by the user. As mentioned in the introduction, this formu-
lation suffers from three main issues that make it impractical for most applications:
1) poor efficiency of exhaustive search for more relevant quality measures [12]; 2) re-
dundancy of subgroup sets mined, i.e., the fact that subsets with the highest deviation
according to a certain quality measure tend to cover the same region of the dataset
with slight variations in their description of the subset [75]; 3) lack of statistical guar-
antees and generalization of mined subgroups [77]. We will now go over the recent
contributions for these three issues, with special emphasis for the last two, redund-
ancy and statistical guarantees, which our work proposes to solve.

Efficient exhaustive search. In the last years, several developments have been made
towards more efficient algorithms for mining the top-k subgroups. Lemmerich et al.
[80] proposed an efficient exhaustive search algorithm for numerical targets, Belfodil
et al. [9] proposed to mine over numeric attributes with guarantees, and Boley et al.
[12] proposed an algorithm that exhaustively mines subgroups that take into account
the dispersion (deviation) of the subgroups target distribution. Subgroup discovery
extension from deviations of distributions of target variables to deviations between

88 5.1. Related work

models is also called Exceptional model mining [79, 32], and can be applied to mod-
els such as Bayesian Networks [31] or non-parametric spatio-temporal patterns [28].
Comparing to our approach these works do not take into account the redundancy
of the subgroups found, and thus, the subgroups found tend to overlap in the same
region of the dataset.

Redundancy of subgroup sets. To address redundancy among subgroups most previ-
ously proposed approaches encompass supervised pattern set mining [16], and meth-
ods based on relevance [46] and diversity [74, 75]. Unlike diversity-based methods,
the supervised pattern set mining objective is to find a fixed number of patterns, which
has to be chosen in advance, while relevance is limited to non-numeric targets. It is
this last group, the diversity-based methods that share most similarities to our work,
i.e., the area of Subgroup Set Discovery.

The main approaches in Subgroup Set Discovery are CN2-SD [71], Diverse Subgroup
Set Discovery (DSSD) [75], Skylines of subgroup sets [76], Monte Carlo Tree Search
for Data Mining (MCTS4DM) [14], Subjectively Interesting Subgroup Mining (SISD)
[83], and FSSD [10]. The differences between Subgroup Set Discovery methods are
summarized in Table 5.1, with RSD representing our approach and where all methods
are compared in terms of: if they use a list or a set; the target variables they support; if
they have statistical guarantees; if they have automatic stopping criteria (not defined
by the user); and if they have a global definition of a subgroup set or list.

Considering the methods in more detail, CN2-SD [71] was one of the first methods to
deal with redundancy and is a direct adaptation of CN2, a classical rule learner, and
can be applied to nominal target variables. It uses a sequential approach, wherein
each iteration adds one subgroup to the set, and then removes the data covered by
that subgroup until no more data can be covered in this way. DSSD [75] developed a
technique based on a novel measure of overlap between subgroups, to iteratively find
a set of subgroups. It can be applied to single-and-multi-target nominal and numeric
variables, with different types of quality measures. Skylines of subgroup sets [76]
proposed to directly account for quality-diversity trade-off, to find the Pareto optimal
subgroup sets of size k. MCTS4DM [14] uses Monte Carlo tree search to improve
the quality of the subgroups found, although it can only be applied to binary target
variables, and attributes of the same type (all numeric or all nominal). Subjectively
interesting Subgroup Discovery [83] finds the subjectively most interesting subgroup
for numeric target variables with regard to the prior knowledge of the user, based
on an information-theoretic framework for formalizing subjective interestingness. By
successively updating the prior knowledge based on the found subgroups, it iteratively
mines a diverse set of subgroups that are also dispersion-aware. FSSD [10] is a more

Chapter 5. Discovering subgroup lists with RSD 89

recent approach that considers the ‘union’ of all subgroups as a single pattern by
forming a disjunction of subgroups and evaluating its quality and can only be applied
to binary target variables. This approach is similar to a sequential approach for mining
subgroups although the individual contributions of each subgroup are dissolved in the
‘new’ subgroup formed by the disjunction of all subgroups.

Table 5.1: Comparison of Subgroup Set Discovery methods in terms of their key prop-
erties. From left to right: model class (list or set); types of supported target variables:
binary, nominal, numeric and multi-target; statistical guarantees of the subgroups
mined; automatic stopping criterion (not defined by the user); global formulation of a
subgroup set/list.

Target variables

Method Model binary nom. num. multi Statistical Stopping Global

RSD list 3 3 3 3 3 3 3

CN2-SD[71] list 3 3 - - - - -
DSSD[75] set 3 3 3 3 - - -
Skylines[76] set 3 3 - - - - 3

MCTS4DM[14] set 3 - - - - - -
SISD[83] set - - 3 3 3 - -
FSSD[10] list 3 - - - - 3 3

Statistical guarantees. In terms of statistical guarantees to subgroup discovery, most
approaches consider first mining the top-k subgroups and then post-processing them
in terms of a test to find subgroups that are statistically significant [30, 77]. Duivesteijn
and Knobbe [30] proposed to use random permutations of the target variable for a
quality measure to evaluate how the discovered subgroups compare against the null
hypothesis generated by those permutations. Later, van Leeuwen and Ukkonen [77]
discussed the concept of significance for subgroup discovery and concluded that p-
values should be used with caution as not all false discoveries can be removed in this
way, as there will always be random subsets with large effect sizes. An exception to
this is the work of Lijffijt et al. [83] (already mentioned in the last section), which
uses the maximum entropy principle to iteratively find subgroups that are subjectively
interesting against a user’s prior knowledge. Our approach strongly deviates from the
first two, as our method tests for statistical guarantees during the mining process, it
is parametric, as we use categorical and normal distributions to model the targets,
and also, through the use of MDL-based model encoding, we take into account the
concept of a list of subgroups and penalize for all the possible subgroup lists that
could be discovered in the dataset. Regarding the last approach, even though they

90 5.1. Related work

also mine subgroups iteratively, they lack a definition of an optimal subgroup set, and
their goal is to model the user’s subjective knowledge and find regions in the data
that the user does not know much about.

5.1.2 Pattern mining

Pattern mining and association rule mining [2] are concerned with mining items that
co-occur together, i.e., itemsets or patterns, and relationships between itemsets and a
target item, e.g., a class, respectively. A key problem is that they suffer from the infam-
ous pattern explosion, i.e., they tend to return enormous amounts of patterns/rules.
To solve this problem, many approaches were proposed, but two stand out concerning
our work, namely, association rule classifiers and statistical rule mining.

Association rule classifiers. A simple way to reduce the number of rules returned is
by aggregating association rules in a set used for classification and using a perform-
ance measure to choose the best set. It is relevant to notice that classifiers based on
association rule mining have a similar structure to predictive rule lists and subgroup
lists, as they tend to order the rules sequentially. The best-known techniques are CBA
[85] and CMAR [82], but they tend to obtain large numbers of rules. Similar to pre-
dictive rule lists, these methods aim to maximize the classification performance, and
not to describe the deviations in the data. Another important difference is that these
methods tend to return crisp decisions instead of probabilities and can in general only
be applied to nominal targets.
A similar class of methods is that of supervised pattern set mining [128]. The key dif-
ference is that these methods do not automatically trade-off model complexity and
classification accuracy, requiring the analyst to choose the number of patterns k in
advance.

Statistical rule mining. The idea of mining rules with statistical guarantees is ap-
pealing as it increases the users’ trust in the patterns found while at the same time
reducing the number of rules returned by a miner [51]. The concept of statistical rule
mining progressed by incrementally adding more statistical guarantees. Webb [124]
proposed for the first time mining of statistically significant patterns, then Hämäläinen
[49] proposed KingFisher, an efficient algorithm to mine dependent rules, i.e., rules
that show a dependency with respect to a target in terms of a dependency test like
Fisher’s exact test. After that, Hämäläinen and Webb [50] added extra procedures to
remove spurious relations from the miner findings. Lastly, the criteria under which
causal rules can be mined was defined and an efficient algorithm to mine them was
proposed [19]. All these methods focus on mining all the possible individual statistic-

Chapter 5. Discovering subgroup lists with RSD 91

ally significant (or causal) rules and not on finding a non-redundant set, as is the case
of Subgroup Set Discovery. In this chapter, we aim to accomplish both at the same
time, finding the best global subgroup list while assuring local statistically robust sub-
groups.

5.1.3 MDL in pattern mining

In the past, for models similar to our subgroup lists, the MDL principle has mostly
been embedded in small parts of predictive algorithms to solve the problem of over-
fitting. Prominent examples of this are C4.5 [103] and RIPPER [22], which use the
MDL principle to prune overfitting models, and help generalization.
In data mining, Krimp [120] was the first method to apply the MDL principle hol-
istically, i.e., for the whole model selection process, unlike previously mentioned ap-
proaches that only used it for a subset of the model selection process. This seminal
work used a version of crude MDL, i.e., a not completely optimal ‘two-part’ encod-
ing of the data, to find the pattern list that compressed a transaction dataset best,
to address the pattern explosion issue in pattern mining. Recent works have aimed
at improving the encoding through the use of refined MDL for encoding the data,
i.e., an encoding that enjoys optimal properties at least in expectation [48]. The first
of such approaches was DiffNorm [18], which used a prequential plug-in code to
improve the encoding of transaction data and recently MINT was proposed to mine
real-valued pattern sets with a similar encoding[86]. Although Krimp, DiffNorm, and
MINT are used to describe data, they aim at finding regularities—not deviations—and
do not consider a target variable. For an in-depth survey of MDL in pattern mining
please refer to the survey by Galbrun [40].
MDL has been used to find optimal sets of association rules for two-view data [73] and
tabular data [35]. The latter is the most related to our work, as it aims to find rule sets
that describe the data well. Similar to Krimp it aims at finding all associations in the
data though, not at identifying deviations as we do, and no specific target variable(s)
are defined.

5.1.4 Algorithmic comparison in the literature

Our proposed algorithm RSD (presented in Section 5.2) is based on a combination of
beam search for candidate generation and greedy search for iteratively adding sub-
groups to the subgroup list. Both techniques have been widely employed for similar
problems.
Greedy search has been often used for learning decision trees and predictive rule lists
[103, 22, 39, 96], as well as for pattern-based modeling using the MDL principle

92 5.1. Related work

[120, 18, 73]. Beam search has been commonly used for candidate generation in sub-
group discovery [87], including for finding subgroup sets [71, 75]. We next provide
the motivation for our algorithmic choices, and describe key similarities and differ-
ences compared to algorithms in the most related literature: 1) predictive rule list
learning; 2) subgroup set discovery; and 3) evolutionary algorithms for rule learning.

Algorithms for finding predictive rule lists. The common way to finding a good
predictive rule list is through heuristic search [22, 39, 96], however recent works
have proposed to find optimal models for binary classification under specific condi-
tions [125, 5]. Belong to the former category, Proença and van Leeuwen [96] use a
Separate and Conquer (SaC) technique to greedily add rules, together with Frequent
Pattern Mining for candidate generation. In this chapter, the beam search for can-
didate generation does not require a discretized dataset, is faster, and without large
loss in the quality of the subgroups found due to discretization [88]. In the latter
category, of optimal predictive rule list discovery, the algorithms were only developed
for binary classification, and either require a simplification of the rules in the list to
decision rules—with true or false instead of probabilities as consequent—combined
with a simple objective function, such as accuracy, that allows for efficient branch and
bound [5], or it requires the dataset to be sparse and small, with large minimum sup-
ports for the rules (above 10%) and using convergence to an optimal algorithm such
as Monte Carlo sampling [125]. Neither of these approaches can deal with a variety
of target variables as our proposed approach can.

Algorithms for subgroup set discovery. Both beam search and greedy search are
commonplace in subgroup set discovery [71, 75], due to their efficiency and flexib-
ility in being applied to different types of targets. More recently, Monte Carlo Tree
Search (MCTS) was proposed for mining sets of subgroups [14], although it can only
be applied to binary targets and specific types of explanatory variables. In the classical
case of mining top-k subgroups without incorporating diversity, exhaustive search is
feasible [12], but again it is only efficient for specific types of quality measures or tar-
gets and does not scale well for finding the best set [75]. Together with the fact that
the loss in quality of using beam search is almost negligible [88], exact algorithms
are rarely used in MDL-based data mining, because it is infeasible [120, 18, 35, 96].

Evolutionary algorithms. Global heuristics, such as evolutionary algorithms, have
been applied to fuzzy rule-based model learning [34], and although they could also
be applied here, we found that the arguments in favor of a local search approach
were stronger: 1) local heuristics have often been successfully applied for pattern-
based modeling using the MDL principle, making it a natural approach to consider;

Chapter 5. Discovering subgroup lists with RSD 93

2) local heuristics are typically faster than global heuristics, as much fewer candid-
ates need to be evaluated; 3) global heuristics typically require substantially more
(hyper)parameters that need to be tuned (e.g., population size, selection and muta-
tion operators, etc.), while local heuristics have very few.

5.2 The RSD Algorithm

In this section we propose the Robust Subgroup Discoverer (RSD), a heuristic algorithm
to find good subgroup lists based on the proposed MDL formulation. As the problem
of finding an optimal subgroup list is NP-hard [90] we propose a heuristic based
on the Separate-and-Conquer (SaC) [38] strategy of iteratively adding the local best
subgroup to the list, combined with beam search for candidate subgroup generation.
The use of greedy heuristic approaches is common practice in MDL-based pattern
mining [120, 96] and rule-based learning [39], and beam-search is widely adopted
for its efficient generation of subgroups in subgroup discovery [71, 87, 75].

This section is divided as follows. First, in Section 5.2.1 we give a high-level descrip-
tion of our proposed algorithm and motivate our choices. After that, in Section 5.2.2
the quality measure used to iteratively add rules—compression gain—is presented,
together with its relationship with subgroup discovery quality measures. Then, in
Section 5.2.3 the statistical testing interpretation of the compression gain is given.
After that, in Section 5.2.4 the beam search for candidate subgroup generation is
presented in detail. Then, in Section 5.2.5 the Separate-and-Conquer RSD algorithm
is presented. Finally, in Section 5.2.6 the time and space complexity of the overall
algorithm is given.

5.2.1 Algorithm high-level description

The algorithm we propose is a heuristic composed of two parts: we greedily add one
subgroup at a time to the subgroup list, for which candidates are generated using
beam search. More specifically, the greedy search algorithm starts from an empty list,
with just a default rule equal to the priors in the data, and adds subgroups accord-
ing to the well-known separate-and-conquer strategy [39]: 1) iteratively find and add
the subgroup that gives the largest improvement in compression; 2) remove the data
covered by that rule; and 3) repeat steps 1-2 until compression cannot be improved.
This implies that we always add subgroups at the end of the list, but before the default
rule. Beam search is used for candidate generation at each iteration to find the best
candidate to add. Given a beam width wb and maximum search depth dmax it consists
of: 1) find all items, i.e., all conditioned variables such as x1 < 5 or x2 = category,

94 5.2. The RSD Algorithm

and add the best wb items according to compression gain (Eq. (5.2.2)) as subgroups
of size 1 to the beam; 2) refine all subgroups in the beam with all items and add
the best wb to a new empty beam; 3) repeat 2 and 3 until the maximum depth dmax
of the beam is reached and return the best subgroup—according to the compression
score—found in all iterations. The beam search algorithm is described in detail in
Section 5.2.4 and the greedy search algorithm RSD in Section 5.2.5.

The main reasons for using greedy search and adding one subgroup at a time are
its computational simplicity and transparency, as it adds at each iteration the locally
best and most statistically significant subgroup found by the beam search. Further,
in the context of subgroup discovery beam search was empirically shown to be very
competitive in terms of quality when compared to a complete search, while it demon-
strates a considerable speed-up [88]. Also, its straightforward implementation allows
flexibility to easily extend this framework to other types of targets in the future.

5.2.2 Compression gain

To quantify the quality of annexing a subgroup s at the end (after all the other sub-
groups and before the default rule) of subgroup list SL, denoted SL⊕ s, we employ
the compression gain:

s∗ = arg max
s∈∫

∆βL(D,SL⊕ s) = arg max
s∈∫

[
L(D,SL)− L(D,SL⊕ s)

(ns)β

]
, β ∈ [0, 1]

(5.1)
where β weighs the level of the normalization, and ∆βL(D,SL⊕s) should be greater
than zero for a decrease in the encoded length from L(D,SL) to L(D,SL⊕ s). Con-
sidering the extremes, with β = 1 we have the normalized gain first introduced for
the classification setting by Proença and van Leeuwen [96], and for β = 0 we have
the absolute gain which is just the regular gain used in the greedy search of previous
MDL-based pattern mining [120].
Developing Eq. (5.1) further shows that the compression gain only depends on the
added subgroup s, as in the specific case of a subgroup list the default rule is fixed
and it is the same for M and M ⊕ s:

∆βL(D,SL⊕ s) =
L(Y | X, SL)− L(Y | X, SL⊕ s)

(ns)β
+
L(SL)− L(SL⊕ s)

(ns)β

= ∆βL(Y | X, SL⊕ s) + ∆βL(SL⊕ s),

where ∆βL(Y | X, SL ⊕ s) and ∆βL(SL ⊕ s) are the data and model compression
gain, respectively.
Furthermore, if we note that maximizing the gain in Eq. (5.1) is equivalent to max-
imizing the subgroup discovery equivalent objective of Eq. (3.18) for nominal targets

Chapter 5. Discovering subgroup lists with RSD 95

and Eq. (3.25) for numeric targets, this means that finding the subgroup that max-
imizes the compression gain is the same as finding the subgroup that maximizes the
subgroup discovery equivalent objective:

s∗ = arg max
s∈∫

∆βL(SL⊕ s)

= arg max
s∈∫

nsKL(Θ̂s; Θ̂d)

(ns)β
− COMP(ns,#param)

(ns)β
+ ∆βL(SL⊕ s)

where nsKL(Θ̂s; Θ̂d) has the general form of a subgroup discovery measure of Eq. (2.20),
COMP(ns,#param) is the complexity associated with each target probability distribu-
tion (normal or categorical), and ∆βL(M ⊕ s) the added model complexity of adding
s.

Interpretation of hyperparameter β. The hyperparameter β represents a tradeoff
between finding many subgroups that cover few instances or few subgroups that cover
many instances2. In the general form of a subgroup quality measure of Eq. (2.20), β
is just given by β = 1−α. We empirically show later that the normalized gain (β = 1)
usually achieves a better MDL score than other β values; this was already known
for other measures from rule learning theory [39]. Nonetheless, the main objective of
subgroup discovery is to locally describe regions in the data that strongly deviate from
a certain target. Thus, it is up to the user to specify what one is looking for in the data:
either a more granular and detailed perspective (β close to one) or a more general
and high-level one (β close to zero). Note that, for comparison to other algorithms
we will always use the normalized gain (β = 1) except when explicitly stated.

5.2.3 Statistical testing interpretation of compression gain

The gain of Eq. (5.2.2) shares the same expression of the weighted Kullback Leibler
divergence that was shown in Sections 3.4.3 and 3.5.3 to be equivalent to a Bayesian
one-sample proportions/multinominal test and t-test, respectively. Thus, it too guar-
antees individual “significance” for each subgroup according to these tests. We will
now look at this in more detail.
A Bayesian factor is an alternative to frequentist statistical testing and is given by the
likelihood of both hypotheses generating the data [61]:

logK = log
Pr(D |M1)

Pr(D |M2)
,

where M1 and M2 are two models that we are comparing. Values of logK above zero
tell us that there is more evidence in favour of model M1, while negative values tell us

2For details on the empirical analysis of different β values please refer to Appendix G.2

96 5.2. The RSD Algorithm

the opposite [61]. If we look back at the expression of the greedy gain in Eq. (5.1) for
a general model M (instead of SL) and convert the encoding L(· · ·) to probabilities
Pr(· · ·) using the Shannon-Fano code: L(A) = − log Pr(A) [114]; we can see that it
takes the same form plus some extra terms:

∆βL(M ⊕ s) = log

(
Pr(Y | X,M ⊕ s)

Pr(Y | X,M)

Pr(M ⊕ s)
Pr(M)

)
1

(ns)β
=

log (K ·KM)

(ns)β
,

where KM = Pr(M ⊕ s)/Pr(M) represents the division of the model’s likelihood
(called a prior in Bayesian statistics). Thus, we obtain an expression with three terms:
the first,K, gives us an MDL equivalent to a Bayesian factor that weighs how likely the
data is given each model (M or M ⊕ s); the second, KM , gives the likelihood of each
model; and the third is a normalizing term to be able to compare the contribution of
different subgroups given how much data they cover.
The first conclusion that we can draw from this is that the subgroup that maximizes
the compression gain is the one that locally maximizes this statistical test, i.e., it is the
mode of this distribution. In the specific case of subgroup lists, the factor term K of
the compression gain corresponds to a proportion/multinomial or t-test depending on
the type of target variable. Second, the term KM can be seen as a multiple hypothesis
testing correction, as the way in which L(M) was developed puts more weight on
model structures that can generate more variants. Also, it should be noted that the
encoding of L(M) is more subjective than L(D |M), but it will be an upper bound on
the perfect encoding for M , and can be taken as a more ‘conservative’ test. Third, if
the compression gain is positive for a subgroup, it means that there is more evidence
in favor of adding that subgroup than not. Fourth, the normalizing term allows us to
adjust the weight that is given to the data covered by each subgroup.
In summary, we can say that the greedy gain based on the compression gain, a com-
mon heuristic for MDL in pattern mining, is maximizing the test statistic of a hypo-
thesis test and only adds that subgroup for which most evidence is available.

5.2.4 Beam search for subgroup generation

The beam search algorithm for subgroup generation is shown in Algorithm 5.1. It
starts by discretizing all variables depending on their subsets, i.e., nominal with the
operator equal to (=) and numeric by generating all subsets with ncut points. At each
iteration, the wb subgroups that maximize the selected gain (Eq. (5.1)) are chosen
and will be expanded with all discretized variables until the maximum depth dmax of
the description is achieved.

The algorithm accepts as inputs the datasetD = (X,Y), the number of cut points ncut
used for equal frequency binning of numeric variables, the beam width wb, the max-

Chapter 5. Discovering subgroup lists with RSD 97

imum depth of search or number of variables in a subgroup description dmax, and the
indexes of the data covered by the subgroups present in the subgroup list, coverageS .
The algorithm is initialized by filling the beam and subgroup with an empty subgroup
of size zero (Ln 2 and Ln 3, respectively). The algorithm is composed of three nested
loops. In short, the first (outer) loop goes over each depth of subgroups generated,
the second loop goes over each candidate to extend for a fixed depth, and the third
(interior) loop goes over each item used to extend the candidates. Now we will go
into more detail over each loop.

In the first loop, the depth is increased by one (Ln 6), candidates is initialized with the
patterns of the beam from the previous iteration (Ln 7), and after that, all patterns
are removed from the beam (Ln 8). The second loop iterates over all candidates (Ln 9)
and expands each of them in the third loop with all the items generated from the ex-
planatory variables X (Ln 11). An item is a subgroup of size one that can be generated
by logical conditions on one variable Xj ∈ X. If variable Xj is nominal, each item is
a condition given by the equality operator (=) on each category, e.g., feathers = yes

from Figure 2.4. If the variable is numeric, equal frequency binning with open and
closed intervals is used to generate all possible items (further explained at the end
of this paragraph). Expanding a candidate cand to generate a subgroup new (Ln 15)
requires computing three properties: 1) its coverage of the data through a bitwise
AND (Ln 12); 2) its description (Ln 15); and 3) its statistics Θnew (Ln 15). Its score
is computed according to Eq. (5.1) (Ln 16). Then if the score is higher than the pat-
tern with a minimum score in the beam, the latter is replaced by the higher-scoring
one. Finally, if the score is higher than the score of subgroup, this is replaced. The
algorithm terminates when the maximum search depth of the subgroups is reached
and subgroup is returned, to be added to the subgroup list (Ln 21).

Numeric discretization. Suppose a numeric variable Xj , and a number of cut points
ncut. The items generated from this numeric variable are all valid subsets (they must
cover at least one instance) given by equal frequency discretization with open and
closed intervals for ncut cut points. Open intervals require one operator (≥ or ≤),
while closed intervals require two (≥ and ≤). As an example, in the case of a generic
variable Xj and ncut = 2, with cut point1 = 10 and cut point2 = 20 it generates four
items with one operator, i.e., items1op = { xj ≥ 10, xj ≤ 10,xj ≥ 20, xj ≤ 20}, and
one item with two operators, i.e., items2op = {10 ≤ xj ≤ 20}.

98 5.2. The RSD Algorithm

Algorithm 5.1 Beam search for subgroup generation

Input: Dataset D, number of cut points ncut, beam width wb, depth max. dmax, and
data already covered by other subgroups in SL coverageS .

Output: subgroup
1: (X,Y)← D

2: beam← [∅]

3: subgroup← ∅
4: d← 1

5: while d ≤ dmax do
6: d← d+ 1

7: candidates← beam

8: beam← empty list(size = wb)

9: for (cand, coverage cand) ∈ candidates do
10: coverage cand← coverage pattern & coverageS
11: for (item, bitset item) ∈ items(X) do
12: coverage new ← coverage item & coverage cand

13: cand new ← cand⊕ item
14: Θnew ← statistics(Y, coverage new)

15: subgroup new ← (cand new,Θnew)

16: score← ∆βL(D,SL⊕ subgroup new)

17: if score > min score(beam) then
18: beam← replace(beam, subgroup new,min score)

19: if score > ∆βL(D,SL⊕ subgroup) then
20: subgroup← replace(subgroup, subgroup new)

21: return subgroup

5.2.5 The Robust Subgroup Discoverer algorithm

Algorithm 5.2 presents RSD3, for Robust Subgroup Discoverer, a greedy algorithm that
starts with an empty subgroup list and iteratively adds subgroups until no more com-
pression can be gained, where compression is measured in terms of compression gain
(Eq. 5.1) of adding a subgroup s.
The algorithm starts by taking as input a dataset D and the beam search parameters,
namely the number of cut points ncut, the width of the beam wb, and the maximum
depth of search dmax. It initializes the predictive rule list with the default rule, based
on the dataset empirical distribution (Ln 1). Then, while the beam search algorithm

3Our implementation uses the rulelist package (https://pypi.org/project/rulelist/) and can be
found on GitHub: https://github.com/HMProenca/RuleList

https://pypi.org/project/rulelist/
https://github.com/HMProenca/RuleList

Chapter 5. Discovering subgroup lists with RSD 99

returns subgroups that improve compression (Ln 3), it keeps iterating over two steps:
1) finding the best subgroup from all candidates generated in the beam search (Ln 4);
and 2) adding that subgroup to the end of the model, i.e., after all the existing sub-
groups in the model (Ln 5). The beam search returns the best subgroup on the data
not covered by any subgroup already in model M . When no subgroup improves com-
pression (non-positive gain) the while loop stops and the subgroup list is returned.
Note that beam search is used at each iteration, instead of only once at the beginning,
as it can converge to local optima, and running the candidate search once would thus
bias our search to the top-k subgroups instead of the best at each iteration.

Algorithm 5.2 RSD algorithm

Input: Dataset D, number of cut points ncut, beam width wb, depth max. dmax and
normalization β

Output: Subgroup list S
1: M ← [Θd(Y)]

2: subgroup← BeamSearch(SL,D,wb, ncut, dmax)

3: while ∆βL(D,SL⊕ subgroup) > 0 do
4: subgroup← BeamSearch(SL,D,wb, ncut, dmax)

5: SL← SL⊕ subgroup
6: return S ∈ SL

5.2.6 Time and space complexity

In this section we analyze the time and space complexity of RSD as given in Al-
gorithm 5.2. The algorithm can be divided in three parts: 1) preprocessing of the
data; 2) the Separate and Conquer (SaC) algorithm; and 3) the beam search. Note
that depending on the type of target we have different complexities as each statistic
requires different computations.

1) Preprocessing phase. In the preprocessing phase all the coverage bitsets of the
items are generated, i.e., the indexes of the instances covered by each item generated
from numerical and nominal variables. The set of all items is ζ and its size is given by
|ζ|. Thus, we go over the data a maximum of |ζ| times, obtaining a time complexity
of O(|ζ|n), and the results are stored in a dictionary for O(1) access. Also, there are
some constants that are cached for a fixed amount the first time they are computed,
such as the universal code of integers LN(i), and Γ(i) for the numeric target case, and
C(i) in the categorical case.

100 5.2. The RSD Algorithm

2) SaC phase. For the SaC phase, it is clear that the algorithm runs the beam search
|S| times, and will thus multiply the time complexity of the beam search by |S|.

3) Beam search phase. For the last dmax−1 iterations of the loop, each of wb candid-
ates in the beam is refined with all |ζ| items, which gives a time complexity by itself
of O(dmaxwb|ζ|). Then, for each refinement, the algorithm computes its coverage,
statistics and score, where the last two depend on the number and type of target.
The coverage of the refinement is the logical conjunction of two bitsets, i.e., the bitset
of the candidate bcand and that of the item bitem. The computation of this new cover-
age has a time complexity of O(|bcand| + |bitem|), which in a worst-case equals a run
over the dataset O(n+n) = O(n). Thus the time complexity of the algorithm is given
by

O
(
|S|dmaxwb|ζ|stats

)
,

where stats is the time complexity associated with computing the statistics for one
candidate. Now, we will analyse the specific stats complexity depending on the type
of target.

Nominal target variables. The statistics for categorical distributions require the com-
putation of the usage for each class for each target of each subgroup rule and the new
default rule. Assuming a maximum number of classes k (for all target variables) and
t target variables, then the worst case for the coverage gives O(tnk) from which the
likelihood can be directly computed.
The nominal score requires the computation of the data and model encoding, from
which the data encoding dominates. The data encoding entails the computation of
the NML complexity and likelihood for each refinement. In general, the values of the
NML complexity are just computed once and then cached, thus in a worst-case where
one requires to compute n values for C(ni),∀ni=1,...,n. Using the approximation of
Mononen and Myllymäki [92] for its computation, with O(

√
10ni + k), gives a worst-

case complexity of O(tn(
√
n + k)). This does not depend on the parameters of the

beam, as the lookup of these values is O(1). The likelihood in general dominates over
this term as it is computed for each refinement.
Thus the total time complexity for nominal targets is given by:

O
(
|S|dmaxwb|ζ|tnk + tn(

√
n+ k)

)

Numeric target variables. The statistics for normal distributions require the compu-
tation of the mean and variance (or residual sum of squares) for the refined subgroup

Chapter 5. Discovering subgroup lists with RSD 101

and for the default rule. The mean can be computed in O(n) and given this the vari-
ance can also be computed in O(n). Thus, for all the targets one obtains O(tn).
The numeric score requires the computation of the data and model encoding, from
which the data encoding dominates. The data encoding entails the computation of the
gamma function and the direct use of the statistics. Similar to the NML complexity,
we compute the values of the gamma function as needed and cache them afterward.
In general, the computation of the gamma function is dominated by the other terms
as we only compute it at most n times.
Thus the total time complexity for numeric targets is given by:

O
(
|S|dmaxwb|ζ|tn

)
.

Notice that this represents a worst case scenario and that in practice the direct use
of bitsets for the computation of the class usages in the nominal case makes it faster
than its numeric counterpart for the same dataset size.

Space Complexity. The main memory consumption resources of the algorithm are:
1) the storage of items ζ; 2) the beam; and 3) the cached constants. The item stor-
age requires at most the storage of |ζ| bitsets, with each bitset taking O(n), thus it
totals O(|ζ|n). The beam saves wb bitsets at a time, thus having a space complexity of
O(wbn). The cached values make up a total of n values being dominated by the items
or beam part. Thus, depending on which part dominates, the space complexity of the
algorithm is

O(wbn+ |ζ|n).

5.3 Empirical evaluation

In this section, we will empirically validate our proposed problem formulation and
the RSD4 algorithm. To do this, we will test how varying the hyperparameters of RSD
affects the subgroups found, and then we will compare RSD against state-of-the-art
algorithms in subgroup set discovery5.

This section is divided as follows. In Section 5.3.1 we evaluate the effect of changing
the different hyperparameters of RSD. Then, in Section 5.3.2 we present the setup
for validating our approach, based on algorithms compared against, and datasets and
measures used to evaluate them. After that, in Section 5.3.3, the results for univariate

4Our implementation uses the rulelist package (https://pypi.org/project/rulelist/) and can be
found on GitHub: https://github.com/HMProenca/RuleList

5For replication of the experiments in this chapter please refer to: https://github.com/HMProenca/
RobustSubgroupDiscovery.

https://pypi.org/project/rulelist/
https://github.com/HMProenca/RuleList
https://github.com/HMProenca/RobustSubgroupDiscovery
https://github.com/HMProenca/RobustSubgroupDiscovery

102 5.3. Empirical evaluation

and multivariate nominal targets are presented. Then, in Section 5.3.4 the results for
univariate and multivariate numeric targets are shown. Finally, in Section 5.3.5 the
runtimes of the algorithms are compared.

5.3.1 Influence of RSD hyperparameters

Here we study the effect of RSD hyperparameters on the discovered subgroup lists.
To not overfit our hyperparameters to the datasets and for this reason obtain a better
performance than other methods, the values of RSD hyperparameters for the remain-
ing experiments (after this section) are fixed at the standard values of the DSSD
implementation for the beam search, i.e., beam width wb = 100, number of cut points
ncut = 5, and maximum search depth dmax = 5, and to the compression gain nor-
malization term β = 1 (normalized gain). These values are assumed to be enough
to achieve convergence and to obtain good subgroup lists and are thus taken as the
standard values of RSD.
Now, to evaluate hyperparameter influence, we vary one hyperparameter value at a
time while others remain fixed at their standard values. The results of varying the
compression gain normalization hyperparameter β can be seen in Appendix G.2; the
results of varying the beam search hyperparameters wb, ncut, and dmax can be found
in Appendix G.3.

Normalization term β. The results are evaluated in terms of compression ratio, SWKL
(presented in Section 3.6), and the number of rules. For compression gain, the results
(as shown in Appendix G.2) are similar for a small number of samples but β = 1

and 0.5 obtain better results for larger datasets. In terms of SWKL, normalized gain
(β = 1) is better. On the other hand, in terms of the number of rules β = 1 can obtain
one order of magnitude more rules than the others, especially for larger datasets.

Beam search hyperparameters wb, dmax, and ncut. The results are evaluated in
terms of compression ratio and the average number of conditions per subgroup (for
dmax). In general, increasing any of the three values result in better models according
to relative compression. It is also interesting to note that for maximum depths above
5 it is rare to have an average number of conditions above 4, backing up our decision
for the standard value dmax = 5.

5.3.2 Setup of the subgroup quality performance comparisons

In this section we evaluate the quality of our proposed method by comparing it to
the state-of-the-art approaches in subgroup set discovery, which may vary depend-

Chapter 5. Discovering subgroup lists with RSD 103

ing on the type of target variable(s). The comparison takes three dimensions: 1) the
algorithms used to compare against; 2) measures used to evaluate the quality of the
subgroups found by each algorithm; 3) the datasets in which the algorithms are eval-
uated. We now discuss the details of each dimension.

1) Algorithms. The algorithms we compared to and their relevant characteristic are
listed in Table 5.2. A short description of each is as follows:

1. top-k6 - standard subgroup discovery miner used as a benchmark.

2. seq-cover6 - sequential covering as implemented in the DSSD implementation.

3. CN2-SD7 - the classical sequential covering subgroup discovery algorithm, which
is only implemented for nominal targets, and only removes the examples of the
class of interest already covered (not all examples covered, as seq-cover does).

4. Diverse Subgroup Set Discovery (DSSD)6 - diverse beam search for diverse sets
of subgroups [75].

5. Monte Carlo Tree Search for Data Mining (MCTS4DM) - an approach to improve
on beam search to find better subgroups without getting stuck in local optima
[14].

6. FSSD - a sequential approach for subgroup set discovery that defines a set as a
disjunction of subgroups [10].

As can be seen in Table 5.2 most algorithms can only be applied to single-target binary
problems, and besides RSD only top-k, seq-cover and CN2-SD support the use of Sum
of Weighted Kullback-Leibler (SWKL) divergence to measure the quality of the found
subgroup set. Thus we only compare against seq-cover and CN2-SD, algorithms that
output a subgroup list and can be applied to many target types, and with top-k as a
reference of a non-diverse subgroup discovery algorithm. The algorithms that output
sets do not have a stopping criterion or global formulation, and underperform in
terms of SWKL, thus those comparisons are relegated to Appendix G.4. As an example,
DSSD can indeed be applied to all types of target variables, but the fact that it uses
weighted sequential covering makes it unsuitable to use the SWKL, making it unfairly
underperform and inappropriate for a fair comparison (as shown in the Appendix).
Also, note that we do not compare with machine learning algorithms that generate
predictive rules for classification or regression, such as RIPPER or CART, as the rules

6top-k, seq-cover, and DSSD are available in the implementation of the DSSD algorithm http://www.

patternsthatmatter.org/software.php#dssd/
7Available in the Orange data mining toolkit https://orangedatamining.com/

http://www.patternsthatmatter.org/software.php#dssd/
http://www.patternsthatmatter.org/software.php#dssd/
https://orangedatamining.com/

104 5.3. Empirical evaluation

Table 5.2: Algorithms included in the comparison and their functionalities. Quality represents
the quality measure used to evaluate one single subgroup, search is the type of search algorithm
supported, swkl shows if it supports SWKL to measure the quality of a subgroup set, output tells
if the subgroups discovered form a list or a set, and ‘3’ and ‘−’ represent if that type of target
variable(s) is supported. MCTS stands for Monte Carlo Tree Search. * Most algorithms only
support WKLµ for numeric targets (Eq. (2.24)), i.e., a Weighted Kullback-Leibler divergency
that only takes into account the mean, contrary to the one used by RSD that also uses the
variance (Eq. (2.25)). For the nominal target case there is only one WKL (the different WKL
measures are explained in Section 2.6.2).

nominal numeric

Algorithm quality search output swkl bin. nom. multi single multi

RSD WKL beam list 3 3 3 3 3 3

top-k WKL∗µ beam set 3 3 3 3 3 3

seq-cover WKL∗µ beam list 3 3 3 3 3 3

CN2-SD entropy beam list 3 3 3 - - -
DSSD WKL∗µ beam set - 3 3 3 3 3

MCTS4DM WKL∗µ MCTS set - 3 - - - -
FSSD WRAcc DFS list 3 3 - - - -

generated aim at making the best prediction possible, and not the highest difference
from the dataset distribution, as shown theoretically in Section 3.7.

Quality measures. As the quality of a set is measured using the SWKL, the most
appropriate measure to use is the Weighted Kullback-Leibler (WKL) for the algorithms
that support it. CN2-SD supports entropy which is related to WKL. FSSD only supports
WRAcc at the moment. Note that for the case of numeric targets, except RSD, all use
a WKL that only takes into account the mean, given by WKLµ(s) = ns/σ̂d(µ̂d− µ̂s)2,
in contrast to the deviation-aware measure of RSD in Eq. 3.25.

Hyperparameters. Most algorithms use beam search, thus only have three main hy-
perparameters: the maximum depth of search dmax; the width of the beam wb; and
the number of cut points to discretize numeric explanatory variables ncut. The larger
the values the better the performance but the slower the algorithms become, as time
complexity is linear to each of them. To be fair and not over-search the hyperpara-
meters, we selected the default values of the DSSD and seq-cover implementation for
all beam-search algorithms: dmax = 5, wb = 100, ncut = 5. For the case of MCTS4DM,
which requires a larger set of hyperparameters, only the number of iterations is set,
niter = 50 000, to ensure good convergence, and the rest were set as default. FSSD
only requires the maximum depth, which was set at 5.

Chapter 5. Discovering subgroup lists with RSD 105

2) Measures. To ascertain the quality of the subgroup sets we use three different
measures. The first is our proposal to measure the overall quality of an ordered set of
subgroups, the Sum of Weighted Kullback-Leibler (SWKL), as defined in Eq. (3.26).
The other two are the number of subgroups |S| and the average number of conditions
per subgroup |a|, two commonly used measures for the interpretability/complexity
of a set of rules. These two measures follow the law of parsimony and assume that
fewer subgroups with fewer conditions are easier to understand by humans, which
can be an invalid assumption in some situations. Nonetheless, it is widely used and
its simple understanding typically makes for a good proxy [27]. In machine learning,
algorithms are tested on their generalization to unseen data, which is achieved by
multiple runs using different test sets (e.g., cross-validation). Even though this could
be of interest, subgroup discovery is always evaluated on the same dataset, as the goal
is to describe the current dataset well. For this reason, and for the fact that existing
implementations are not prepared to use a test set, we follow the standard approach
in subgroup discovery of only testing on the current dataset.
3) Datasets. For a thorough analysis we use a total of 54 datasets—10-univariate
binary; 10 univariate nominal; 9 multivariate nominal; 15 univariate numeric; and
9 multivariate numeric—that are listed in Tables G.1 and G.2 of Appendix G.1. The
datasets are commonly used benchmarks of machine learning and subgroup discovery,
which are publicly available from the UCI8, Keel9, and MULAN10 repositories. The
datasets were selected to be the most varied possible. In the case of the nominal
target datasets in Table G.1, the number of targets range from 1 to 374, the classes
from 2 to 28, the samples from 150 to 45 222, and the variables from 3 to 1 186. In the
case of the numeric target datasets in Table G.2, the number of targets range from 1

to 16, the samples from 154 to 22 784. Note that we used multi-label datasets instead
of multi-nominal as the latter are not widely available.

5.3.3 Nominal target results

The results obtained on binary, nominal, and multi-label datasets with sequential sub-
group set miners can be seen in Table 5.3, while the results for algorithms that output
sets can be found in Table G.3 in Appendix G.4. We can see that overall our algorithm
gets 15 out of 29 best results, compared with seq-cover in second place with 13 best
results. In terms of SWKL and per type of data, RSD achieves the smallest ranking
for binary, seq-cover for nominal, and both are tied for multi-nominal. This small

8https://archive.ics.uci.edu/ml/
9http://www.keel.es/

10http://mulan.sourceforge.net/datasets.html

https://archive.ics.uci.edu/ml/
http://www.keel.es/
http://mulan.sourceforge.net/datasets.html

106 5.3. Empirical evaluation

difference in the results between RSD and seq-cover is important for two reasons.
First, it validates SWKL, as it shows that seq-cover is already implicitly maximizing
it without knowing it. Second, it shows that RSD can obtain on par or slightly bet-
ter results than other established approaches. Our non-diverse baseline, top-k, shows
that covering different regions of the dataset is important to maximize SWKL.
Regarding the number of found subgroups we can see that in most cases, all al-
gorithms are in the same order of magnitude, with some clear exceptions where RSD
obtains many more subgroups (for adult, nursery, kr-vs-k, and mediamill). These res-
ults can be explained by the use of normalized gain (β = 1) by RSD, together with
the fact that these datasets have a large number of samples, few variables, and/or a
large number of categories. First, let us recall that the normalized compression gain
of Eq. (5.1) is composed of a data covering part and a model penalization part and
that both are normalized by the number of instances covered, which gives an advant-
age to subgroups that cover less data but are well-covered (only one category, or few
categories). When the datasets are larger and the number of variables is reasonably
small, like adult with 45 222 examples and 14 variables, there is a larger chance of
finding more statistically “significant” subgroups, as there can be more regions where
subgroups only (or almost only) cover one class, and the penalization of the model
encoding is small as there are not many variables. On the other hand, subgroups that
cover more data can more easily have a larger entropy in the class label distribution.
For example, kr-vs-k, which is a reasonably large dataset with 28 056 and with 18 class
labels, a subgroup that only covers one class label, as opposed to covering many class
labels, will have a higher chance of being chosen. The number of subgroups found can
be large, but it was shown in a classification setting that they generalize well [96]. It
is interesting to note that in the case of corel-5k, RSD does not find any “significant”
subgroup to add.
Regarding the number of conditions per subgroup, the two best-performing algorithms
in terms of SWKL, RSD, and seq-cover, tend to have a similar and lower number of
conditions than the other algorithms. Top-k, only covering the same region, has a
tendency to be close to the maximum depth of 5.

5.3.4 Numeric target results

The results for the single-target and multi-target numeric datasets can be seen in
Table 5.4. In general, it can be seen that RSD obtains the best results for 23 out
of 25 datasets. This is to be expected as SWKL and RSD take into account the dis-
persion/deviation of the subgroup target while top-k and seq-cover do not. This is
clearly supported by the normalized standard deviation of the first subgroup found,
where RSD tends to find subgroups with smaller deviations for 10 out of 15 cases.

Chapter 5. Discovering subgroup lists with RSD 107

Comparing SWKL results for top-k with seq-cover and RSD shows that irrespective
of dispersion-aware (RSD) or not (seq-cover), covering different regions of the data
increases the quality of the list in terms of SWKL, validating the use of our measure.
It should be noted that both top-k and seq-cover could in practice support taking into
account the deviation but that would require several non-trivial modifications in their
source code.
Regarding the number of subgroups, seq-cover tends to have more rules than RSD for
datasets with less than 5 000 examples, while RSD tends to have more for a larger
number of examples. This makes sense as there is more evidence to identify possible
significant subgroups.
Regarding the number of antecedents, RSD tends to have, on average, one condition
fewer than seq-cover for single-target and a similar number for the multi-target case.

5.3.5 Runtime comparison

Runtimes of all algorithms compared, i.e., top-k, seq-cover, CN2-SD, and RSD are
shown in Figures 5.2a and 5.2b. In general, it can be seen that the runtime increases
with the number of samples in the dataset for a fixed data type. For the nominal
datasets, it seems that there is an increase in runtime with the number of target
variables, which does not seem to happen for numeric targets. This is because for
multivariate numeric targets the number of subgroups found was, in general, smaller.
Comparing the algorithms against each other, as expected, top-k was the fastest al-
gorithm, as it only needs to search for the subgroups once, while the others need
multiple iterations.
For nominal targets, CN2-SD was the slowest algorithm, which stems from the use of
entropy as a quality measure—experiments with WRAcc proved orders of magnitude
faster. RSD seems to perform on par with seq-cover and is often even slightly faster.
For numeric targets, RSD was one order of magnitude slower than seq-cover. One
possible reason is the extra time to compute the variance, although this does not
explain the difference between both algorithms. It seems that a further study of the
numeric implementation could make for an interesting research direction.

108 5.3. Empirical evaluation

son
ar

ha
be

rm
an

bre
ast

Can
cer

au
str

alia
n

Tic
Ta

cTo
e

ge
rm

an
che

ss

mush
roo

ms
mag

ic
ad

ult iris

ba
lan

ceCMC

pa
ge

-bl
ock

s

nu
rse

ry

au
tom

ob
ile
gla

ss

de
rm

ato
log

y
kr-

vs-
k

ab
alo

ne
bir

ds

CAL50
0

Core
l5k

em
oti

on
s
fla

gs

ge
nb

ase

med
iam

ill
sce

ne
ye

ast
10 1

100

101

102

103

104

105

ru
nt

im
e

(s
ec

on
ds

)
RSD
top-k
seq-cover
CN2-SD

(a) Nominal targets.

ba
seb

all

au
toM

PG
8

de
e
ele

-1

for
est

Fir
es

con
cre

te

tre
asu

ry
wizm

ir

ab
alo

ne

pu
ma3

2h

aile
ron

s

ele
va

tor
s

bik
esh

ari
ng

cal
ifo

rni
a
ho

useed
m en

b
jur

a
oe

s10
oe

s97
osa

les sf1 sf2
slu

mp wq

100

101

102

103

104

ru
nt

im
e

(s
ec

on
ds

)

RSD
top-k
seq-cover

(b) Numeric targets.

Figure 5.2: Runtime in seconds for all algorithms for each dataset. The black vertical
line divides the type of datasets, i.e., from left to right: univariate binary, nominal,
and multi-label for nominal targets, and univariate and multivariate for numeric.

Chapter 5. Discovering subgroup lists with RSD 109

Table 5.3: Nominal target results. This includes single-binary, single-nominal, and multi-label,
separated by horizontal lines in the table (top to bottom). The properties of the datasets can be
seen in Table G.1, and are ordered in ascending number of: 1) target variables; 2) number of
classes; and 3) number of samples. The evaluation measures are {quality of the subgroup set
swkl; number of subgroups |S|; and average number of conditions |a|}. ‘avg. rank’ stands for
the average ranking for the respective target variable type, where 1 represents the best rank.
Note that CN2-SD does not work for multi-label case and thus the empty values −. *as RSD
produced no subgroups for corel-5k, seq-cover number of subgroups was used as a reference.

top-k seq-cover CN2-SD RSD

datasets swkl |S| |a| swkl |S| |a| swkl |S| |a| swkl |S| |a|
sonar 0.24 2 4 0.960.960.96 9 2 0.67 11 2 0.43 2 3

haberman 0.08 1 5 0.390.390.39 20 4 0.18 12 4 0.04 1 1

breastCancer 0.37 6 2 0.80 13 2 0.80 11 2 0.820.820.82 6 2

australian 0.26 5 3 0.690.690.69 13 3 0.54 24 3 0.55 5 2

tictactoe 0.50 16 3 0.73 18 3 0.21 21 3 0.870.870.87 16 2

german 0.08 4 5 0.30 22 4 0.420.420.42 48 4 0.14 4 3

chess 0.25 17 3 0.87 13 2 0.68 51 3 0.970.970.97 17 2

mushrooms 0.49 12 4 0.92 11 1 1.001.001.00 36 1 1.001.001.00 12 1

magic 0.16 69 5 0.38 35 4 0.42 616 3 0.470.470.47 69 4

adult 0.11 103 5 0.27 79 4 0.43 1230 4 0.310.310.31 103 4

avg. rank 3.8 1.9 3.8 2.1 2.4 2.2 2.2 3.8 2.5 1.91.91.9 1.9 1.5

iris 0.53 4 2 1.451.451.45 5 2 0.96 4 2 1.44 4 1

balance 0.21 9 3 0.800.800.80 19 3 0.18 3 3 0.69 9 3

CMC 0.07 7 3 0.300.300.30 38 4 0.27 42 3 0.25 7 2

page-blocks 0.19 21 5 0.45 26 2 0.44 12 4 0.490.490.49 21 3

nursery 0.92 81 2 1.36 22 3 0.87 8 4 1.631.631.63 81 3

automobile 0.38 5 4 1.611.611.61 11 3 1.541.541.54 7 4 1.25 5 2

glass 1.01 5 2 1.55 5 2 2.142.142.14 6 2 1.92 5 1

dermatology 0.54 9 2 2.282.282.28 9 2 2.12 7 3 2.11 9 2

kr-vs-k 0.45 351 5 0.75 43 4 0.20 61 5 1.831.831.83 351 3

abalone 0.26 16 5 0.62 29 4 0.60 49 3 0.740.740.74 16 2

avg. rank 3.7 2.4 3.0 1.61.61.6 3.0 2.2 2.8 2.3 3.4 1.9 2.4 1.4

emotions 0.71 17 5 1.93 22 4 − − − 2.682.682.68 17 3

scene 0.39 49 5 1.85 33 4 − − − 3.053.053.05 49 4

birds 0.49 8 5 2.022.022.02 20 4 − − − 1.57 8 3

flags 0.44 5 4 2.402.402.40 17 4 − − − 1.21 5 2

yeast 0.49 35 5 1.83 55 5 − − − 2.202.202.20 35 5

genbase 0.88 15 2 5.51 12 1 − − − 5.825.825.82 15 1

mediamill 0.43 131 5 1.44 60 5 − − − 2.962.962.96 131 5

CAL500 1.46 1 5 16.9116.9116.91 36 4 − − − 1.24 1 5

corel5k∗ 5.81 144 3 5.395.395.39 144 4 − − − 0.00 0 0

avg. rank 2.7 1.9 2.7 1.71.71.7 2.3 1.9 − 1.71.71.7 1.8 1.4

110 5.3. Empirical evaluation

Table 5.4: Numeric target results. This includes single-numeric and multi-numeric, separated
by a horizontal line in the table (top to bottom). The properties of the datasets can be seen in
Table G.2, and are ordered in ascending number of: 1) target variables; 2) number of classes;
and 3) number of samples. The evaluation measures are { quality of the subgroup set swkl;
number of subgroups |S|; normalized standard deviation of the first subgroup σ̃t1; and average
number of conditions |a|}. ‘avg. rank’ stands for the average ranking for the respective target
variable type, where 1 represents the best ranking. Note that σ̃t1 is not shown for the multi-
numeric case as it is not easy to understand.

top-k seq-cover RSD

datasets swkl σ̃t1 |S| |a| swkl σ̃t1 |S| |a| swkl σ̃t1 |S| |a|
baseball 0.26 0.82 7 4 1.40 1.22 26 4 1.861.861.86 0.01 7 2

autoMPG8 0.43 0.54 8 4 1.45 1.85 22 4 1.571.571.57 0.18 8 2

dee 0.46 0.50 9 4 1.29 2.01 20 4 1.351.351.35 0.32 9 2

ele-1 0.29 1.06 8 4 1.14 0.94 22 4 1.221.221.22 1.24 8 2

forestFires 0.61 6.84 22 4 2.73 0.15 57 4 3.913.913.91 7.57 22 3

concrete 0.28 0.65 18 4 1.27 1.53 35 4 1.311.311.31 0.21 18 3

treasury 0.43 0.68 31 4 2.74 1.46 21 4 3.853.853.85 0.01 31 2

wizmir 0.70 0.31 22 4 2.15 3.22 26 4 2.722.722.72 0.15 22 2

abalone 0.23 0.59 26 4 0.47 1.68 126 5 0.710.710.71 1.32 26 3

puma32h 0.55 0.59 48 4 1.39 1.68 70 5 1.441.441.44 0.29 48 3

ailerons 0.24 1.23 98 4 1.04 0.82 105 4 1.441.441.44 0.98 98 4

elevators 0.23 1.44 158 4 0.83 0.69 150 5 1.311.311.31 1.40 158 4

bikesharing 0.26 1.09 136 4 1.24 0.92 91 4 1.701.701.70 0.02 136 4

california 0.19 0.90 174 4 0.69 1.11 116 5 1.141.141.14 0.00 174 4

house 0.19 1.59 269 4 0.91 0.63 143 5 2.022.022.02 2.83 269 5

avg. rank 3.0 2.1 1.8 2.0 2.0 2.3 2.3 2.7 1.01.01.0 1.6 1.8 1.3

edm 0.47 − 5 5 0.81 − 9 2 1.881.881.88 − 5 2

enb 2.73 − 41 2 3.54 − 19 2 8.718.718.71 − 41 2

slump 1.38 − 4 5 2.742.742.74 − 17 4 2.57 − 4 3

sf1 0.16 − 3 5 2.062.062.06 − 47 4 1.24 − 3 3

sf2 0.86 − 2 5 2.29 − 18 4 0.910.910.91 − 2 4

jura 0.47 − 15 5 2.38 − 28 4 3.523.523.52 − 15 3

osales 2.17 − 45 4 18.09 − 48 3 26.4426.4426.44 − 45 3

oes97 6.55 − 16 3 30.79 − 19 4 34.3634.3634.36 − 16 4

oes10 6.56 − 23 3 29.11 − 27 4 40.6540.6540.65 − 23 3

wq 0.87 − 62 5 2.06 − 47 4 11.1411.1411.14 − 62 4

avg. rank 3.0 − 1.7 2.4 1.7 − 2.6 1.8 1.31.31.3 − 1.7 1.8

Chapter 5. Discovering subgroup lists with RSD 111

5.4 Case Study: Hotel Bookings

To assess the usefulness of our method, we apply it to understand the type of clients
that make a hotel booking based on how much time in advance (lead time in days)
this was done. To this end, we used the “Hotel booking demand dataset” by Antonio
et al. [6] and analysed the data of a resort hotel in the year of 2016. The first four
subgroups of a total of 260 obtained with SSD++ can be seen in Figure 5.3 and its
subgroups versus the dataset in Figure 5.4. Only the first 4 subgroups are shown here
for clarity, and given that greedy search is used, they are also the 4 most interesting
subgroups.

s description of client bookings n µ̂ σ̂ overlap

1 month = 9 & customer type = Transient-Party 22 533 34 −
& meal = Half Board & country = GBR & adults ≥ 2 days days

2 month ∈ [7, 9] & market segment = Groups 29 336 ∼ 0 0%

& weekend nights = 1 & distribution channel = Direct

3 month = 9 & week nights =4 16 343 3 0%

& distribution channel = Corporate

4 week nights = 0 & deposit type = Refundable 20 9 ∼ 0 0%

& repeated guest = no & adults≥ 2

dataset overall distribution 18 550∗ 92 99 −

Figure 5.3: First 4 subgroups of a subgroup list obtained by RSD with normalize gain (β = 1)
on the Hotel booking dataset with target lead days—number of days in advance the bookings
were done. Description contains information regarding client bookings, n the number of in-
stances covered, µ̂ and σ̂ are the mean and standard deviation in days, and overlap is the
percentage of the subgroup description that is covered by subgroups that come before in the
list, i.e., how independently can the subgroups be interpreted. The last line represents the data-
set overall probability distribution. ∗ The n of the dataset is the total number of instances in
the dataset.

The results show us a very detailed picture of the dataset and at first glance, one
notices that most subgroups cover a small number of instances. Nevertheless, this is
normal as they represent highly defined subgroups, with a very different mean and an
almost zero standard deviation, compared with the dataset µ̂d = 92 and σ̂d = 99. As
an example, subgroup 1 has an average lead time circa 6 times higher than the dataset
distribution, together with a standard deviation that is 3 times smaller. This subgroup
seems to represent a group of people that travelled together from Great Britain and
all chose the same type of booking, while with some slight days of difference in their
bookings. Another interesting subgroup is the 4th which shows that there is a group

112 5.5. Case study: flight delay analysis

of around 20 similar bookings for groups of 2 or more adults done with only 9 days
before arrival when the deposit type is refundable. If one would follow the whole
subgroup list one would have a complete summary of the bookings done.

0 100 200 300 400 500 600 700 800
Lead time of booking (days) before arrival

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

pr
ob

ab
ilit

y
de

ns
ity

 o
f d

at
as

et
 d

ist
rib

ut
io

n dataset
1

2

3

4

Figure 5.4: Hotel bookings kernel density estimation of the dataset distribution and
location (not density) of the mean value of the first 4 subgroups obtained with RSD
and normalized gain.

5.5 Case study: flight delay analysis

In this section, we apply RSD to the problem of describing flight delays, specifically
how to identify subgroups of flights that can (or do not need to) be improved. This
case study is part of the SAPPAO (a Systems APproach towards data mining and
Prediction in Airlines Operations) project, which aims to combine the prediction of
flight delays with the optimization of airplanes and crew scheduling. In our part of
the project, we focus on finding sets of flights with an above-average delay, as it is
impractical to optimize all flight schedules.
Typically, each airline needs to schedule their airplanes and crews 6 and 2 months
in advance of the actual flight departure, respectively [98], and they would like to
minimize the number of delayed flights scheduled. However, at the time of planning,
the only variables available are the origin and destination airports and the proposed
schedule. Thus, the variables highly correlated with delays, such as weather data, are
not available. Nonetheless, as flight delays are additional expenses that airlines would
like to reduce [94], they would still like to identify some of the characteristics of those
flights. For the identified subgroups to impact, they should cover a sizeable amount

Chapter 5. Discovering subgroup lists with RSD 113

of their annual flights.

Dataset. Historical data of flights in the United States is freely available through the
Bureau of Transportation Statistics (BTS) [1]. Specifically, we restrict our analysis
to a single airline and a single year. The reason for this is that airlines have differ-
ent strategies when choosing the scheduled time for their routes, and these can also
change with a periodicity of six months [62]. Also, the results should reveal which
schedules are associated with more delays so that an airline can improve, and using
multiple airlines with different strategies can muddle these insights. The restriction
to the busiest airports comes from the fact that they are more prone to chronic delays
than smaller ones while also covering most airline flights. We selected the year 2017,
a typical year of airline operation compared with 2007 to 2008 and 2020 to 2021 where
the recession and the COVID-19 pandemic have affected flight operations [1]. After
that, we selected one of the major US airlines with a high percentage of delayed
flights: United Airlines (UA), with 16% of flights delayed [1].

After cancelled and diverged flights have been removed, the acquired data totals
577 213 samples. The variables used—with original names from the BTS—are: date;
CRS (Computerized Reservation System) departure time; CRS arrival time; CRS elapsed
time; origin airport; destination airport; and arrival delay. The date was transformed
into six variables: the meteorological season, the respective month, day of the week,
and weekday (or weekend).

Hyperparameters. The goal is to find the characteristics of a large number of delayed
flights. Thus, there are two main ways to use RSD to find subgroups that cover large
numbers of flights: 1) using the absolute-normalize trade-off hyperparameter; 2) us-
ing minimum support threshold. The first approach is flexible as the number of flights
covered depends on the quality of the subgroups, while the second is rigid, as no sub-
group with coverage below the threshold will be admitted. In this case, we choose to
use a strict threshold to simulate an airline engineer looking for a precise number of
flights to influence. Also, we combine the minimum support with normalized gain, as
it will favour finding subgroups with coverage similar to the threshold. As the “size-
able” number of flights depends on the engineer, airline, and budget to make changes,
we fixed it to 1%, a value we thought reasonable to demonstrate the abilities of RSD.

5.5.1 Analysis of subgroups obtained with RSD

The first four subgroups with normalized gain and a minimum support of 1% are
shown in Figure 5.5 and their respective probability density functions (pdf) in Fig-

114 5.5. Case study: flight delay analysis

ures 5.6a, 5.6b, 5.6c, and 5.6d.

Interpretation of the results. As expected, the subgroups’ pdfs follow a similar shape
as the dataset distribution, which makes sense given that the variables used do not
have a strong association. Also, the number of flights covered is around the value of
our minimum support, which agrees with our use of normalized gain. Nonetheless,
the four subgroups represent arrival delays above the dataset’s average, which could
mean chronic delays for those routes. We can see that the pdf of the first subgroup
is the most different, and as we progress towards the least, their pdfs resemble more
the dataset pdf. In terms of the descriptions, it is interesting to notice that all the four
subgroups have either an origin or destination, months, and an arrival or departure
time. Not surprisingly, this seems to point out that chronic delays are associated with
certain airports at specific times of the year. Specifically, three subgroups contain Ne-
wark Liberty International (EWR) airport as origin or destination airport, making it
an airport with a tendency for above-average delay. According to these subgroups, it
would be interesting to investigate flights from or to this airport in the earlier months
of the year.
Violation of the model assumptions. Figures 5.6a, 5.6b,5.6c, and 5.6d show that
the pdfs are right-tailed distributions. Although the means do not describe the pdf
completely, they still obtained what we were looking for, subgroups different from
the dataset distribution. RSD users should be cautious of this and always compare the
presented statistics with the subgroup’s original distribution to avoid wrong conclu-
sions.

Chapter 5. Discovering subgroup lists with RSD 115

s description of a flight route n Arr. Delay

1 dest. = EWR & month ∈ [March;Sep.[& dep. ∈ [13 : 00; 19: 00[5259 45± 90

& arrival ≥ 15: 22 & travel time < 03: 36 min.

2 origin = EWR & month ∈ [May;Sep.[& weekday = yes 5047 37± 75

& departure ≥ 16: 03

3 dest = SFO & month ∈ [Jan.;May.[& departure ≥ 16: 03 5448 27± 76

4 dest = EWR & month ∈ [Jan.; Sep.[& departure ∈ [10 : 11; 13: 00] 5243 23± 77
...

dataset distribution 556 215∗ 2± 47

Figure 5.5: United Airlines (UA) arrival flight delay analysis. The results were obtained
by RSD with normalized gain (β = 0) and a minimum support of 5000. UA dataset
contains one numeric target variable arrival delay in minutes. The dataset is made of
all 2017 flights of United Airlines that were not cancelled , totalling 577 213 flights.
Description contains information regarding flight routes and schedules, n the number
of instances covered, and Arr. Delay the arrival delay in minutes. EWR − Newark
Liberty international airport; SFO = San Francisco international airport airport. ∗ The
n of the dataset is the total number of instances in the dataset.

116 5.5. Case study: flight delay analysis

100 50 0 50 100 150 200 250 300
Arrival delay (minutes)

0.000

0.005

0.010

0.015

0.020

0.025

De
ns

ity

d

1
dataset
1st subgroup

(a) 1st subgroup.

100 50 0 50 100 150 200 250 300
Arrival delay (minutes)

0.000

0.005

0.010

0.015

0.020

0.025

De
ns

ity

d

2
dataset
2nd subgroup

(b) 2nd subgroup.

100 50 0 50 100 150 200 250 300
Arrival delay (minutes)

0.000

0.005

0.010

0.015

0.020

0.025

De
ns

ity

d

3
dataset
3rd subgroup

(c) 3rd subgroup.

100 50 0 50 100 150 200 250 300
Arrival delay (minutes)

0.000

0.005

0.010

0.015

0.020

0.025

De
ns

ity

d

4
dataset
4th subgroup

(d) 4th subgroup.

Figure 5.6: Probability density plot of the United Airlines arrival delay for the whole
dataset and for the first four subgroups in the subgroup list. The subgroups were
obtained with RSD normalized gain and a minimum support of 5 000. The vertical
lines represent the mean of the dataset and subgroup arrival delays.

Chapter 5. Discovering subgroup lists with RSD 117

5.6 Case study: socioeconomic background and uni-
versity performance

In this section we apply RSD to a real use case to assess its usefulness and limitations.
To this end, we aim at understanding how socioeconomic factors affect the grades
of engineering university students in Colombia on their national exams. The dataset
used to study this is fully described by Delahoz-Dominguez et al. [24]. It contains
socioeconomic variables and grades in national exams done at high school and uni-
versity level for engineering students in Colombia. For this specific case study, we
have selected two of their exam grades at the university for two reasons. First, the re-
lationship between socioeconomic variables and university grades is weaker (than for
high school grades), thus more interesting to see if we can find relations, and second,
only having two exam grades improves the visualization of the results.

Dataset. The dataset used is composed of 12 412 samples, 22 explanatory variables,
and 2 numeric target variables. The explanatory variables refer to the socioeconomic
background of the students at the time of high school, and they are made of vari-
ables such as parents level of education, the household income, which type of high
school they attended, the utilities available at home (e.g., internet and television),
and their neighborhood stratum11. The numeric targets represent their grades, from
0% to 100%, in two national university-level exams, namely quantitative reasoning
and English.
An additional reason for selecting this dataset is that it violates two of our model
assumptions: 1) the target variables values are truncated between 0 and 100, thus
violating the use of a continuous normal distribution to describe them; and 2) the
target variables are not independent, as suggested by a correlation of 53%. If our
approach is shown to work despite these violations, we may consider this is a good
result.

5.6.1 Analysis of subgroups obtained with RSD

The first four subgroups with absolute (β = 0) and normalized (β = 1) gain can
be seen in Figures 5.7a and 5.7b, respectively. The distributions of the first two sub-
groups for both gains can be seen in Figures 5.8a, 5.8b, 5.8c, and 5.8d. The two
extreme gains were used to show that from a user perspective it can be interesting to

11Stratum is a classification system unique to Colombia, where districts are ranked based on their
affluence level from 1 to 6, where 1 is the lowest level https://www.dane.gov.co/index.php/

servicios-al-ciudadano/servicios-informacion/estratificacion-socioeconomica (Accessed on
19 April 2021).

https://www.dane.gov.co/index.php/servicios-al-ciudadano/servicios-informacion/estratificacion-socioeconomica
https://www.dane.gov.co/index.php/servicios-al-ciudadano/servicios-informacion/estratificacion-socioeconomica

118 5.6. Case study: socioeconomic background and university performance

use different gains depending on the goal of the data exploration, i.e., coarse versus
fine-grained perspective.

Comparison of absolute and normalized gain. Overall, with absolute and normal-
ized gain our method finds 7 and 34 subgroups that cover a total of 84% and 92% of
the data, respectively. Looking at Figures 5.8a, 5.8b, 5.8c, and 5.8d, it can be seen
that normalized gain favors smaller and compact subgroups that deviate more from
the dataset distribution, while absolute gain favors larger subgroups that deviate less
from the dataset distribution. These conclusions can be verified by noting that nor-
malized gain subgroups tend to have a smaller standard deviation, between 5% and
9%, while absolute gain has values in the same order of magnitude of the dataset
distribution, i.e., around 23%.

Interpretation of the results. Both normalized and absolute gain results point to
the fact that having a ‘better’ socioeconomic background is associated with higher
grades on average in both types of exams, and the contrary is associated with lower
grades. This is clearer in the absolute gain case, as each subgroup covers more data.
It is noticeable in Figure 5.8b that a subgroup with a standard deviation similar to
the dataset leads to subgroups that are spread throughout the whole range of values.
Nonetheless, that subgroup covers more regions with lower grades than the dataset,
making it a relevant result to understand the dataset better.

In general, it can be seen that some conditions appear often in the subgroups, such
as household income above and below 5 minimum wages and education of one of
the parents parents equal or above high school. It seems that the presence or absence
of these variables is highly associated with above or below-average performance, re-
spectively.

Looking at specific subgroups, it is interesting to see that in the 4th subgroup of the
absolute gain, the Quantitative reasoning grade is equal to the average behavior of
the dataset (77%), while the English grade is 8% above average. Looking at the sub-
groups with normalized gain, we see that there are only slight variations of their
descriptions and that they belong to a similar socioeconomic macro group but with
slight differences in their descriptions, which corresponds to small differences in their
grades distribution.

Violation of the model assumptions. Here we can observe how our method behaves
when some modeling assumptions are violated. Regarding the truncated values, it
seems that the normalized gain is affected by grades around 100 (as seen in Figures
5.8c and 5.8d) as most of its subgroups capture these students, which increases the
average and lowers the standard deviation, making them rank higher. Our method

Chapter 5. Discovering subgroup lists with RSD 119

was not developed for highly stratified target values, but the results seem to show
that it does not seem prohibitive to the use of RSD in these cases as long as the
stratification is mild and the user takes into account this fact.
Regarding the independence assumption, it seems that the subgroups found are still
relevant although both grades are almost always taken into account together, i.e.,
as the values are positively correlated it is more likely to find subgroups with mean
values that are high or low for both exams, but not high for one and low for the
other. This is expected as the encoding of independent normal distributions does not
take into account the covariance between target variables, and thus that case is not
deemed a deviation by the current model formulation.

120 5.6. Case study: socioeconomic background and university performance

s description of a student socioeconomic background ns Quant.(%) English(%)

1 household income ≥ 5 min. wage & public school = no 1676 87± 16 88± 14

& edu mother > high school & Microwave = yes

2 household income < 5 min. wage 4031 72± 25 54± 26

& stratum < 5 & public school = yes

3 gender = M & edu father ≥ high school 1478 85± 17 78± 20

& social support = None & stratum > 3

& public school = no

4 social support = None & edu father > high school 997 77± 22 76± 19

& public school = no & internet = yes
& mobile = yes
...

dataset distribution 1945∗ 77± 23 68± 26

(a) Subgroup list with absolute gain (β = 0). First 4 subgroups of a total of 7 and swkl = 0.41

s description of a student socioeconomic background ns Quant.(%) English(%)

1 household income ≥ 5 min. wage & gender = M & 39 96± 5 92± 6

household size < 3 & edu father > high-school
& mobile = yes

2 household income ≥ 5 min. wage 23 96± 5 95± 4

& school type = academic & occ. mother = retired
& edu father ≥ Undergrad

3 household income ≥ 5 min. wage 30 96± 5 93± 6

& job mother = independent & stratum ≥ 4 & gender = M
& job father = independent

4 job mother = executive & stratum ≥ 4 & mobile = yes 32 93± 9 94± 6

& job father = independent & public school = no
...

dataset distribution 942∗ 77± 23 68± 26

(b) Subgroup list with normalized gain (β = 1). First 4 subgroups of a total of 34 and swkl
= 0.52

Figure 5.7: Colombia engineering students performance in Quantitative Reasoning and English
exams. The results of Fig. 5.7a and 5.7b were obtained by RSD with absolute gain (β = 0) and
normalized gain (β = 1). The dataset contains two numeric target variable Quantitative Reas-
oning and English exams in a 0-100% scale. The dataset represents 12 412 engineering students
in Colombia, their grades in university national exams and their social-economic background.
Description contains information regarding students socio-enconomic background, ns the num-
ber of instances covered, Quant. and English the average grade and standard deviation in the
respective exams. ∗ The n of the dataset is the total number of instances in the dataset.

Chapter 5. Discovering subgroup lists with RSD 121

0 20 40 60 80 100
Quantitative reasoning grade (%)

0

20

40

60

80

100

En
gl

ish
 g

ra
de

 (%
)

dataset
 dataset
 dataset

subgroup 1
 subgroup 1
 subgroup 1

(a) 1st subgroup with absolute gain.

0 20 40 60 80 100
Quantitative reasoning grade ()

0

20

40

60

80

100

En
gl

ish
 g

ra
de

 (%
)

dataset
 dataset
 dataset

subgroup 2
 subgroup 2
 subgroup 2

(b) 2nd subgroup with absolute gain.

0 20 40 60 80 100
Quantitative reasoning grade (%)

0

20

40

60

80

100

En
gl

ish
 g

ra
de

 (%
)

dataset
 dataset
 dataset

subgroup 1
 subgroup 1
 subgroup 1

(c) 1st subgroup with normalized gain.

0 20 40 60 80 100
Quantitative reasoning grade (%)

0

20

40

60

80

100

En
gl

ish
 g

ra
de

 (%
)

dataset
 dataset
 dataset

subgroup 2
 subgroup 2
 subgroup 2

(d) 2nd subgroup with normalized gain.

Figure 5.8: Scatter plot of the grades of students for Quantitative Reasoning and
English exam, together with the grades associated with the descriptions of the 1st

and 2nd with absolute and normalized gain.

122 5.7. Conclusions

5.7 Conclusions

We showed that finding good subgroup lists (ordered sets) that are both non-redundant
and statistically robust, i.e., robust subgroup discovery, is computationally feasible. To
achieve this, we proposed a heuristic algorithm dubbed RSD that approximates our
MDL-based formulation of the problem using a greedy search that adds the subgroup
that locally minimizes the MDL criteria to the list in each consecutive iteration. This
approximation was shown to be equivalent to a Bayesian test (factor) between sub-
group and dataset marginal target distributions plus a penalty for multiple hypothesis
testing, which guarantees that each subgroup added to the list is statistically sound.
These assertions are supported by empirical evidence obtained on a varied set of 54

datasets. In the case of nominal targets, our method performed on par in terms of
subgroup list quality, while obtaining smaller lists with fewer conditions. In the case
of numeric targets and through the use of a deviation-aware measure, our method
dominated in 92% of the cases.
Through a case study relating the socioeconomic background and national exams
grades for Colombia engineering university students, we showed that RSD can be
flexibly adapted to different goals of the user. In particular, it can change from a fine-
grained perspective of the data that finds many subgroups that cover small parts of
the data well, to a coarse perspective that finds few subgroups that cover large parts
of the data. Also, it was shown that our method is robust to mild violations of our
model assumptions.

Limitations. Even though the RSD algorithm has some appealing local statistical
properties, we do not know how far the found models are from the optimal sub-
group lists as defined by the global MDL criteria we proposed. Also, it does not scale
very well for numeric targets, which was to be expected from the time complexity
analysis. At the moment, multiple target variables are assumed to be independent,
which can produce erroneous results when this assumption is violated. Preliminary
experiments show that for moderately correlated variables (e.g., with a correlation of
0.5) this does not seem to be an issue, but there is no quantification of its implications.
Similarly, for numeric targets, we use a normal distribution, and several datasets vi-
olate this assumption, either by behaving like a multi-modal or truncated distribution.

6
Conclusions

As machine learning and data mining permeate everyday life, the questions sought
should be as much about algorithms as they should be about society itself. Algorithms
increasingly affect the lives of individuals everywhere; thus, the pertinent questions
are not only purely algorithmic but also about how they can help society solve sys-
tematic issues such as discrimination and social inequality.

For this reason, in recent years, we can find research on both classic topics such as
algorithmic efficiency and statistical guarantees, and on newer issues such as pri-
vacy, fairness, and accountability. It is at the intersection of several of these topics,
namely, algorithmic efficiency, statistical guarantees, and accountability, that we pose
our main research question: “How to learn robust and interpretable rule-based models
from data for machine learning and data mining, and define their optimality?”.

In an honest attempt to answer it, we selected rule lists as models and the MDL
principle as model selection theory. The former confers interpretability by design as
humans can easily understand rule lists. At the same time, the latter allows for an
objective formulation of learning rule lists from data that combines the performance
and complexity of the model in one. Together, these allowed us to propose efficient
algorithms that approximate our optimal formulation and achieve state-of-the-art per-
formance while finding simpler models.

Nonetheless, this dissertation is just one step further in answering this research ques-
tion. Its main limitation is our assumption that interpretability is associated with sim-
plicity, but this is not always the case in reality. Interpretability is subjective, and it
depends on the human that will act on or be acted upon by the model. Although

124 6.1. Summary

our MDL-based formulation attempts to have the least amount of assumptions, in
some cases, it is necessary to add extra input from the human user to guarantee true
interpretability.
Moreover, in Section 6.1 we present an overview of the main conclusions by chapter.
Then, in Section 6.2 we discuss the strong and weak points of our proposal. Finally,
in Section 6.3 we show possible directions of future work.

6.1 Summary

Chapter 1 introduced the scientific background and motivation for this dissertation.

Chapter 2 introduced the necessary mathematical background. In particular, it form-
ally presented the tasks of rule-based prediction, subgroup discovery, and subgroup
set discovery. Then, association rules, the standard component of these tasks, is promptly
defined. Based on the previous definitions, we presented rule lists, i.e., the model class
made of an ordered set of association rules. Furthermore, we distinguish predictive
rule lists for machine learning and subgroup lists for data mining. Finally, it shows
how to measure model quality in the classification and subgroup discovery setting.

Chapter 3 proposed an optimal formulation of predictive rule lists and subgroup lists
for univariate and multivariate, nominal, and numeric target variables based on the
Minimum Description Length (MDL) principle. Three new optimal data encodings
for models that partition the data—rule lists, trees, clusters, etc.—are presented. In
specific, these codes are: 1) the prequential plug-in code for nominal variables; 2)
the Normalize Maximum Likelihood (NML) code for nominal variables; and 3) an
objective Bayesian code with improper priors for numeric variables. We show that
MDL-based subgroup lists with one subgroup are equivalent to top-1 subgroup dis-
covery with weighted Kullback-Leibler divergence as a quality measure, thus valid-
ating subgroup lists as a valid generalization of subgroup discovery. Moreover, the
best subgroup to add according to the MDL criteria maximizes an MDL equivalent
to a Bayesian proportion, multinomial, or t-test plus a multiple hypothesis testing. In
the end, we show the difference between predictive rules and subgroups through our
MDL formulation of both problems.

Chapter 4 proposed CLASSY, a heuristic algorithm based on the MDL formulation of
predictive rule lists for multiclass classification. Experiments show that it finds good
predictive models that are also compact without hyperparameter tuning. CLASSY is
composed of a frequent pattern mining algorithm to pre-mine all candidate rules and

Chapter 6. Conclusions 125

then iteratively adds one rule at a time to the rule list. It effectively only has one hy-
perparameter, the pre-mined set of candidate rules. If this set is made large enough to
accommodate all possible rules in the data, it can find good models independently of
any hyperparameters—at the expense of computational budget. The empirical tests
show state-of-the-art performance on classification, interpretability, and overfitting.

Chapter 5 proposed the Robust Subgroup Discoverer (RSD), a heuristic algorithm
based on our MDL formulation that finds good subgroup lists for univariate and mul-
tivariate nominal and numeric target variables. Experiments over 54 datasets show
that it outperforms state-of-the-art subgroup set discovery algorithms regarding the
quality of sets found, especially for numeric targets. The algorithm iteratively uses
a beam search to find candidates and then adds the one that locally minimizes the
MDL optimal formulation. This approximation is equivalent to a Bayesian test (factor)
between subgroup and dataset marginal target distributions plus a penalty for mul-
tiple hypothesis testing. Thus, we guarantee the statistical robustness of each sub-
group in the list.

Chapters 4 and 5. The algorithms of both chapters share the greedy adding of rules,
although CLASSY pre-mines all association rules, and RSD uses beam search at each
iteration. The algorithms can be interchanged for both tasks in practice, although
given their historical development, they do not overlap. Nonetheless, CLASSY reflects
the intention of having few hyperparameters that we aimed for classification, and RSD
demonstrates the flexibility necessary for data exploration, making them appropriate
for their respective chapters.

6.2 Discussion

In this section we discuss the advantages and disadvantages of our proposals. To make
this section consistent with the previous, we organize the discussion per chapter that
proposes new work, i.e., Chapters 2, 3, 4, and 5.

Chapter 2. The only new proposal of this chapter is the subgroup list model class. Se-
quential subgroup set discovery was always defined heuristically, and each subgroup
was interpreted individually without considering the previously found ones. We pro-
pose the first global dataset formulation of the problem of subgroup set selection that
is equivalent to top-1 subgroup discovery in the case of a subgroup list with only one
subgroup, and that also fits some of the previous heuristic definitions of sequential
selection. Its main limitation is that subgroups far down in the list are hard to inter-

126 6.2. Discussion

pret for large lists as they require considering previous ones. Also, this is not the only
possible generalization of subgroup discovery to sets.

Chapter 3. In this chapter, we presented the MDL formulation of predictive rule lists
and subgroup lists.

In the case of predictive rule lists, it allows using a single measure—the MDL score—
to measure the bias-variance trade-off, one of the core problems in learning models
from data. Even though predictive rule lists have long been used in machine learning,
they have solely focused on classification and mostly on univariate target classifica-
tion. We have proposed a theoretical formulation for classification and multi-target
classification and regression. Compared with its Bayesian counterpart for rule lists for
classification, our MDL formulation tries to make fewer assumptions, which we be-
lieve makes it more robust against overfitting. The main limitation of our formulation
is that it assumes that a parsimonious model is interpretable, which is not always the
case [26].

In the case of subgroup lists, it formulates a global perspective of sequential subgroup
discovery. It generalizes the original problem of subgroup discovery to lists and gives
it a balance between the complexity of the list and the quality of the descriptions.

Chapter 4. CLASSY is a heuristic algorithm with very few hyperameters that is com-
petitive against state-of-the-art algorithms. It finds models with similar classification
performance that are more compact and overfit less. It can also be made independ-
ent of its hyperparameters at a computational expense. The main drawback of our
approach is that it is limited to binary input variables and single-target multiclass
problems. Also, compared with RSD of Chapter 5 it does not provide local statistical
guarantees for each of the added rules except that it improves the global score.

Chapter 5. RSD is a heurisitic algorithm that can find subgroup lists for univariate
and multivariate nominal and numeric targets. Contrary to CLASSY it can deal with
both nominal and numeric input variables. In the case of numeric targets, it uses
a dispersion-aware measure to find subgroups with smaller standard deviations in
the target values. Its normalization hyperparameter can change the granularity of
the search from very specific to more general subgroups. One of its disadvantages
is that we do not know how close we are to the global optimum. Also, when the
normalization is used to the maximum (normalized gain), the algorithm is susceptible
to noise in the data, i.e., it would find a different model if small variations are added
to the data.

Chapter 6. Conclusions 127

6.3 Future Work

This dissertation focuses on predictive rule lists for machine learning and subgroup
lists for subgroup discovery based on the MDL principle. We decided to divide future
work into technical developments that can be achieved soon —short and medium-
term research—and the vision of the role rule-based models can take in machine
learning and data mining— long-term research.

6.3.1 Short and medium-term research

Given the main topics of this dissertation, we will divide the technical advances into
five different lines of research: 1) the MDL formulation of rule lists; 2) predictive rule
lists; 3) subgroup lists; 4) search algorithms, and 5) rule sets.

1) The MDL formulation of rule lists can be extended to different types of target
variables or distributions. First, it is straightforward to combine nominal and nu-
meric targets through independent categorical and normal distributions using the
MDL principle. It gives us an objective measure of both in bits. Then, instead of as-
suming independence between target variables, one can accommodate dependencies
using multivariate numeric distributions. Finally, other types of distributions that can
be more appropriate in different scenarios can be used, such as a Poisson distribution.

2) Predictive rule lists were only empirically tested for multiclass classification.
Chapter 3 already defines the optimal predictive rule list for regression and multi-
target classification and regression; thus, only the algorithm would need to be exten-
ded to these cases.

3) Subgroup lists, and similarly to the MDL future work, could accommodate non-
independent distributions for multivariate targets and propose extensions to RSD find
them.

4) Search algorithms. At the moment, only a greedy separate-and-conquer search
is proposed. It would be essential to test the feasibility of optimal search algorithms
such as branch-and-bound or Markov Chain Monte Carlo (MCMC).

5) Rule sets. In this dissertation, we only study rule lists (ordered rule sets). Extend-
ing the MDL theory and algorithms to overlapping rule sets would be a considerable
development.

128 6.3. Future Work

6.3.2 Long-term research

In terms of long-term research, the main directions we envision are related to better
approximations of the real problems with fewer assumptions about the ideal beha-
vior of the data. We will divide the topics into four groups: 1) interpretability; 2)
rule-based models for sequential data; 3) rule-based models for image data; and 4)
causal analysis.

1) Interpretability. As mentioned before, interpretability is subjective, and one can-
not expect to have one universal formulation that works for everyone. Also, every
person has a unique background that will make, e.g., some variables in the data easier
to understand than others. For this reason, it is necessary to insert the human in the
learning loop by having an algorithm that takes into consideration both objective con-
cepts and the subjective nature of each individual. A path towards this end would be
to start with an MDL formulation of a problem similar to ours, representing a tabula
rasa or the minimum level of assumptions possible. Then, build upon the subjective
characteristics of the user. This last part is crucial, and there are many options for it.
It can be done at the beginning in the form of something similar to Bayesian priors
or iteratively by presenting the user with a model and querying her about what they
prefer (or not). At no point should the model overfit the data, and for that, the tabula
rasa represents a baseline of the best formulation with minimum assumptions.

2) Rule-based models for sequential data. Even though there is already research
on this direction, it tends to be composed of heuristics that lack statistical robustness.
It would be interesting to conjugate the MDL principle with rule-based models for
sequential data that formally consider dynamic learning and concept drift.

3) Rule-based models for image data. Rule-based models are shallow learners be-
cause they take the input variables as they come and do not transform them into
more complex features. For this reason, to make rule-based models appropriate for
image analysis, it is necessary that they either make their transformations or that they
couple with other tools, such as classic computer vision techniques or neural networks
that return human-understandable macro structures. A specific case of interest would
be to use an image segmentation tool coupled with subgroup discovery to identify
regions in the data that stand out with respect to a particular target, e.g., to describe
areas in satellite image data with more pollution than the average.

4) Causal analysis. In supervised learning, it is usually assumed that any variable
present in the data can be used to predict or describe the target variable. However, not

Chapter 6. Conclusions 129

all variables have the same relationship with the target, as some can cause the target,
be caused by it, or be independent. Also, input variables can be caused by other input
variables. If one pays attention to the causal relationships when learning predictive
models, it allows one to find robust models that generalize to distributions different
from the training data. Also, considering the causal relationships in the data allows
asking questions about counterfactuals or “What if something would have happened
differently than we see on the data?”.

Appendices

A
Kullback-Leibler divergence between

two normal distributions

Let us assume two normal probability distributions, p(x) ∼ N (µp, σp) and q(x) ∼
N (µq, σq). The Kullback-Leibler divergence of q from p is:

KLµ,σ(p; q) =

∫ +∞

−∞
p(x) log p(x) dx−

∫ +∞

−∞
p(x) log q(x) dx

= Ep
[
log p(x)

]
− Ep

[
log q(x)

]
= −1

2

(
log e+ log 2πσ2

p

)
+

1

2
log 2πσ2

q + Ep

[
(x− µq)2

2σ2
q

log e

]

= − log e

2
+ log

σp
σq

+ Ep

[
x2 − 2xµq + µ2

q

2σ2
q

log e

]

= − log e

2
+ log

σq
σp

+
σ2
p + µ2

p − 2µpµq + µ2
q

2σ2
q

log e

= − log e

2
+ log

σq
σp

+
σ2
p + (µp − µq)2

2σ2
q

log e.

(A.1)

Note that in the specific case where the Kullback-Leibler divergence only takes into
account the means and assumes both standard deviations equal, i.e., p(x) ∼ N (µp, σ)

and q(x) ∼ N (µq, σ) one obtains:

KLµ(p; q) =
(µp − µq)2

2σ2
log e, (A.2)

and the weighted version of this KLµ, i.e., WKLµ = nKLµ(p; q), is similar to the
most common subgroup discovery quality functions used for numeric targets that do

134

not take into account the dispersion of the subgroup, such as the weighted relative
accuracy or the mean-test [75], which uses the square root of KLµ. We will call this
measure the Weighted Kullback-Leibler without dispersion.

B
Prequential plug-in encoding for rule

lists with categorical distributions

For this section, let us assume that we have a dataset D = {X, Y }, Y has k = |Y|
class labels and a model M that forms a partition over the whole data. The model M
divides the data D in ω parts, of the form {(X1, Y 1), · · · , (Xω, Y ω)}. Each part has an
associated categorical distribution with estimated parameters Θ̂i over the target part
Y i (as defined in Section 2.4).

Before introducing the prequential plug-in code it is necessary to introduce one main
building block, the smoothed maximum likelihood estimator for a subset i:

p̂c|i =
nc|i + ε

ni + |Y|ε
. (B.1)

Unlike the regular maximum likelihood estimator, this smoothed variant—known as
Laplace smoothing—adds a (small) pseudocount ε to each class-specific usage even
when that class has no counts. This avoids zero probabilities for any class label and
corresponds in Bayesian statistics to using a symmetric Dirichlet prior ε for each class
[42].
Now, the main idea of the prequential plug-in code is to sequentially predict the points
in a subset, starting with no knowledge about their distribution and updating it each
time it receives a point using the Equation (B.1). Intuitively, this means that one starts
with a pseudocount ε for each possible element, constructs a code using these pseudo-
counts, starts encoding/sending/decoding messages one by one, and then updates the
count of each element after sending/receiving each individual message. The prequen-
tial plug-in code is asymptotically optimal even without any prior knowledge on the

136

probabilities [48].
Applying this idea to encode the class labels in Y and ignoring the data partition
at the moment, initially each class label has a pseudocount of ε. Hence, when send-
ing the first class label, y1, we effectively use a uniform code, i.e., − log ε

kε . After
that, however, we increase the count of that class label by one. Normalizing the up-
dated counts results in a new categorical probability distribution—hence a new code:
− log ε+1

kε+1 . This code is the best possible code given the data seen so far and is equal to
the smoothed maximum likelihood of Eq. (B.1). Formally, the plug-in code for encod-
ing the class labels is defined as

Prplug-in(yu = c | Y |u−1) ..=
|{y ∈ Y |u−1 | y = c}|+ ε∑

c′∈Y |{y ∈ Y |u−1 | y = c′}|+ ε
, (B.2)

where u ∈ N, yu represents the uth class label in Y , Y |u−1 = {y1, ..., yu−1} represents
the sequence of the u − 1 first class labels, and ε is the pseudocount necessary for
Prplug-in(y1 = c | Y |0) = ε/kε = 1/k to be valid. The most common values for ε, which
takes the role of a prior in the Bayesian literature [125], are the Jeffrey’s prior of 0.5

or the uniform prior of 1. For simplicity in our experiments, the value of ε = 1 was
used to obtain natural factorials instead of gamma functions as can be seen next.
We now show how this prequential plug-in code can be used in the encoding of the
class labels of a dataset partitioned in ω parts. But assuming no interaction between
the parts, the total encoding is equal to the sum of its parts:

Lplug-in(Y | X,M) = − log

ω∏
i

Prplug-in(Y i) =

ω∑
i

Lplug-in(Y i), (B.3)

where Lplug-in(Y i) = − log Prplug-in(Y i).
Inserting the prequential plug-in code (B.2) in (B.3) we obtain for each part Y i:

Lplug-in(Y i) = − log

 ni∏
u=1

Prplug-in(yu | Y i|u−1)

= − log

(∏k
c=1

∏nc|i−1
u=0 (u+ ε)∏ni−1

u=0 (u+ kε)

)

= − log

(∏k
c=1(nc|i − 1 + ε)!/(ε− 1)!

(ni − 1 + kε)!/(kε− 1)!

)

= − log

(∏k
c=1 Γ(nc|i + ε)/Γ(ε)

Γ(ni + kε)/Γ(kε)

)
,

(B.4)

where Y i|u is a sequence of class labels of length u in part Di, and ni = |Di| and
nc|i = |Dc|i|. Further, Γ is the gamma function, an extension of the factorial to real
and complex numbers that is given by Γ(u) = (u− 1)!.

Appendix B. Prequential plug-in encoding for rule lists with categorical distributions137

This code starts from sequential data, but as one can see in Eq. (B.4), the order in
which one transmits class labels does not matter. In the end, the formulation is order
agnostic and only depends on the counts per class label.

C
Normalized Maximum Likelihood for

rule lists with categorical distributions

For this section, let us assume that we have a dataset D = {X, Y } and model M that
forms a partition over the whole data. Model M divides the data D in ω parts, of the
form {(X1, Y 1), · · · , (Xω, Y ω)}. Each part has an associated categorical distribution
with estimated parameters Θ̂i over the target part Y i (as defined in Chapter 2.4).
Here we show that the NML encoding of a partition equals the sum of the NML
encoding of its parts:

LNML(Y | X,M) =

ω∑
i=1

LNML(Y i). (C.1)

Note that in the case of a subgroup list, as the default rule does not require NML
encoding, the M used in this section represents the subgroups S, and D represents
the data covered by these. In the case of a tree or rule list,M represents the model that
partitions the data at the leaves and rules (including default rule), respectively, and
D the whole dataset. There is no loss of generality for subgroup lists as the separation
property allows us to separate the encoding of the default rule.
First, lets recall the definition of the NML probability distribution [115]:

LNML(Y | X,M) = − log

(
Pr(Y | X; M̂(Y | X))∑

Z∈Yn Pr(Z | X; M̂(Z | X))

)
,

where Yn is the set of all possible sequences of n points with k = |Y| categories,
M̂(Y | X) and M̂(Z | X) are the models with parameters estimated according to the
maximum likelihood over the data Y and Z, respectively. Taking into account that

140

our data is independent and identically distributed (i.i.d.), and that our model M
partitions the data into ω parts, we can further develop the previous formula to:

LNML(Y | X,M)
i.i.d.
= − log

(∏n
i=1 Pr(yi | xi; M̂(Y | X))∑

Z∈Yn

∏n
i=1 Pr(zi | xi; M̂(Z | X))

)

= − log

(∏ω
i′=1 Pr(Y i

′
; Θ̂(Y i

′
))∑

Z∈Yn

∏ω
i′=1 Pr(Zi′ ; Θ̂(Zi′))

)

= − log

(∏ω
i′=1 l(Θ̂

i′ | Y i′)
g(Y,X,M)

)

= − log

 ω∑
i′=1

l(Θ̂i′ | Y i
′
)

+ log g(Y,X,M),

(C.2)

where l(Θ̂i′ | Y i′) is the likelihood function for each of the ω parts and g(Y,X,M) is
a complexity function that depends on these three variables.
The first term is already independent for each part, although the second is not.
Let us now look at g(Y,X,M) when we only have one part in the dataset, i.e., D1.
We will call this term the NML complexity of a multinomial distribution and denote it
by C(n1, k) of one part D1 = {Y 1, X1}, with n1 = |D1| and k = Y

C(n1, k) = log

 ∑
Z∈Yn1

Pr(Z1; Θ̂(Z1))

= log

 ∑
Z∈Yn1

n1∏
i=1

Pr(zi; Θ̂(Z1))

= log

 ∑
n1|1+n2|1+...+nk|1=n1

n1!

n1|1!n2|1!...nk|1!

∏
c∈Y

(
nc|1

n1

)nc|1

(C.3)

where nc|1 is the number of points of category c in Y 1, and the passage from the
second equality to the last is a property of multinomial distributions commonly used
to make the computation of C(na, k) simpler [48]. It is interesting to note that C(na, k)

only depends on the number of points in Y 1 and its cardinality, not on the actual
values. This term, i.e., the complexity of a multinomial distribution over n1 points
with k possible values, measures the likelihood of each possible sequence.
Now we must generalize from a part to the partition of the dataset. To illustrate how
to do this, let us first look at Table C.1, which shows an example of all the possible
sequences in a fixed-length three-part partition of the data. Taking into account those

Appendix C. Normalized Maximum Likelihood for rule lists with categorical
distributions 141

Table C.1: All possible sequences of a partition of fixed length of the data in three
parts. Fixed length means that all possible parts always have the same amount of
points, as e.g. |A1| = |A2| = · · · = |Aa| = nA.

Part 1 Part 2 Part 3

A1 B1 C1

A1 B1 C2

...
...

...
A1 B2 C1

...
...

...
Aa Bb Cc

three parts, let us look at how the probabilities of all those sequences could be com-
puted:

∑
∀a,b,c

Pr(Aa) Pr(Bb) Pr(Cc) =

∑
∀a

Pr(Aa)

 ·
∑
∀b,c

Pr(Bb) Pr(Cc)

=

∑
∀a

Pr(Aa)

 ·
∑
∀b

Pr(Bb)

 ·
∑
∀c

Pr(Cc)

 ,

where this follows naturally from the distributive property of the multiplication. It is
easy to see that this generalizes to partitions of any number of parts. Thus, going back
to the complexity term g(Y,X,M), we can see that

log g(Y,X,M) = log
∑
Z∈Yn

ω∏
i′=1

Pr(Zi
′
; Θ̂(Zi

′
))

= log

ω∏
i′=1

∑
Zi′∈Yn

i′

Pr(Zi
′
; Θ̂(Zi

′
))

=

ω∑
i′=1

log
∑

Zi′∈Yn
i′

Pr(Zi
′
; Θ̂(Zi

′
))

=

ω∑
i′=1

log C(ni′ , k)

(C.4)

142

Substituting this back into Eq. (C.2), we obtain what we wanted:

LNML(Y | X,M) = − log

 ω∑
i=1

l(Θ̂i | Y i)

+

ω∑
i=1

log C(ni, k)

=

ω∑
i=1

l(Θ̂i | Y i) + C(ni, k)

=

ω∑
i=1

LNML(Y i)

(C.5)

D
Bayesian encoding of a normal

distribution with mean and standard
deviation unknown

For encoding a sequence of numeric valued i.i.d. observations such as Y = {y1,, yn},
the Bayesian encoding takes the following form:

PBayes(Y) =

∫
Θ

f(Y | Θ)w(Θ) dΘ, (D.1)

where f is the probability density function (pdf), Θ is the set of parameters of the
distribution, and w(Θ) the prior over the parameters. In the case of a normal distri-
bution Θ = {µ, σ}, with µ and σ being its mean and standard deviation, respectively,
the pdf f(Y | Θ) over a sequence Y is the multiplication of the individual pdfs, thus:

f(Y | µ, σ) =
1

(2π)n/2σn
exp

− 1

2σ2

n∑
i

(yi − µ)2

 , (D.2)

In order not to bias the encoding for specific values of the parameters, we choose to
use the constant Jeffrey’s prior of 1/σ2 for the unknown parameters µ and σ, and add
an extra. Thus, our prior is given by:

w(µ, σ) =
1√

2πσ2
, (D.3)

where 1/
√

2π was added for normalization reasons.

144

Putting everything together, one obtains:

PBayes(Y) =

= (2π)−
n+1
2

∫ +∞

−∞

∫ +∞

0

1

σn+2
exp

− 1

2σ2

 n∑
i

(yi − µ)2

 dσ dµ.

(D.4)

The integrals over the whole space of the parameters µ and σ allow to penalize the
fact that we do not know the statistics a priori, thus penalizing the fact that a distri-
bution over n points could, by chance, have the same statistics as the one found in
the data.
Note that using an improper prior requires that we somehow make it proper, i.e., we
need to find a way to make the integration over the prior finite

∫ ∫
w(µ, σ) = K,

where K is a constant value. The usual way to make an improper prior finite is to
condition on the k minimum number observations Y |k ∈ Y needed to make the
integral proper [48], which in the case of two unknowns (µ and σ) is k = 2. Thus,
instead of using w(µ, σ) we will in practice be using w(µ, σ | Y |2), and using the the
chain rule and the Bayesian formula returns a total encoding of Y equal to

P (Y) = PBayes(Y | Y |2)P (Y |2) =
PBayes(Y)

PBayes(Y |2)
P (Y |2) (D.5)

where P (Y |2) is a non-optimal probability used to define Y |2 = {y1, y2} that we will
define later and y1, y2 chosen in a way that maximizes P (Y). Now that we have all
the ingredients to define P (Y) we will start by defining PBayes(Y) and then choose
the appropriate probability for P (Y |2).
To solve the first integral of PBayes(Y) in Eq. (D.4), we integrate in σ and note that
the formula is an instance of the gamma function,

Γ(k) =

∫ +∞

0

zk−1e−z dz, (D.6)

with the corresponding variable transformation:

z =
A

2σ2
;

1

σ
=

21/2z1/2

A1/2
; dσ = − σ

2z
dz; A =

 n∑
i

(yi − µ)2

 , (D.7)

Performing the variable transformation and noting that the minus sign of dz cancels
with the reversing of the integral limits, we get:

PBayes(Y) =

= Γ

(
n+ 1

2

)
2

n+1
2 −1(2π)−

n+1
2

∫ +∞

−∞

 n∑
i

(yi − µ)2

−
n+1
2

dµ,
(D.8)

Appendix D. Bayesian encoding of a normal distribution with mean and standard
deviation unknown 145

which reveals that the prior on the effect size ρ, and specifically its standard deviation
parameter τ , is equivalent to adding 1/τ2 virtual points to the original data.

To solve the integral in µ we need to introduce the statistics µ̂ and σ̂ as the values
estimated from the data. We define these quantities as:

µ̂ =
1

n

n∑
i

yi; σ̂2 =
1

n

n∑
i

(yi − µ̂)2 , (D.9)

where µ̂ is the mean estimator over n data points and σ̂2 is the estimator of the
variance. Note that for the variance the biased version with n was used instead of
with n − 1 as it allows to compute the Residual Sum of Squares (RSS) directly by
RSS = nσ̂.

Focusing now on the interior part of the integral of Eq. D.8 and rewriting it in order
to resemble the t-student distribution, we obtain:

 n∑
i

(yi − µ)2

−(n+1)/2

=

 n∑
i

(yi)2 − nµ̂2 + nµ̂2 − 2nµ̂µ+ nµ2

−(n+1)/2

=

 n∑
i

(yi)2 − nµ̂2 + n(µ̂− µ)2

−(n+1)/2

=

[
nσ̂′

2
+ n(µ̂′ − µ)2

]−(n+1)/2

=

[
nσ̂2

]−(n+1)/2
[

1 +
(µ̂− µ)2

σ̂2

]−(n+1)/2

[
nσ̂2

]−(n+1)/2
[

1 +
1

n

(
µ̂− µ
s2
s

)2
]−(n+1)/2

,

(D.10)

where s2
s = σ̂2/n is the “sampling” variance. Now, taking into account the fact that

the integral of the t-student distribution over the whole space is equal to one, and
reshuffling around its terms we get

∫ +∞

−∞

[
1 +

1

n

(
µ̂− µ
ss

)2
]−n+1

2

dµ =
Γ
(
n
2

)√
πnss

Γ
(
n+1

2

) . (D.11)

146

Inserting this back in Eq. D.4 we obtain:

PBayes(Y) =

= Γ

(
n+ 1

2

)
2

n+1
2 −1(2π)−

n+1
2

Γ(n2)
√
πnss

Γ(n+1
2)

[
nσ̂2

]−(n+1)/2

= 2−1π−
n
2 Γ

(
n

2

)
1√
n

[
nσ̂2

]−n
2

,

(D.12)

Returning to the the conditional probability of Eq. (D.5), we see that we still need to
define P (Y |2), the non-optimal probability of the first two-points. As in the case of our
model class we assume that the dataset overall statistics are known, i.e., Θ = {µ̂d, σ̂d},
we will use this distribution to find the probability of the points Y |2 = {y1, y2} as :

P (Y |2) = log 2π + log σ̂d +

 1

2σ̂2
d

2∑
i

(yi − µ̂d)2

 log e. (D.13)

Finally, applying the minus logarithm base 2 to all the terms in Eq (D.5) to obtain the
total code length in bits,

LBayes2.0(Y) = − logPBayes(Y) + logPBayes(Y
|2)− logP (Y |2)

= 1 +
n

2
log π − log Γ

(
n

2

)
+

1

2
log n+

n

2
log
(
nσ̂2

n

)
− 1− 2

2
log π + 0− 1

2
− log

 2∑
i

(yi − µ̂2)2

+

2

2
log π + log σ̂d +

 1

2σ̂2
d

2∑
i

(yi − µ̂d)2

 log e

=
n

2
log π − log Γ

(
n

2

)
+

1

2
log n+

n

2
log
(
nσ̂2

n

)
+ Lcost(Y

|2),

(D.14)

where µ̂2 is the estimated mean of y1, y2 and Lcost(Y |2) is the extra cost incurred of
not being able to use a refined encoding for Y |2. Now that the length of the encoding
is defined, we just need to choose the two points. i.e., y1, y2. Because we want to
minimize this length, we notice that there are only two terms that contribute to it in
Lcost(Y

|2), and thus by choosing the two observations close to µ̂d minimizes both the
encoding of P (Y |2) and maximize PBayes(Y |2) for most cases. There are exceptions to
this, depending on the respective values of µd and y1, y2 but these are not significant
to change the values too much and also requires less computational search to find the
points.

E
Bayesian encoding convergence to BIC

for large n

This section shows that for a large number of instances n, the Bayesian encoding of
Appendix D converges to the Bayesian Information Criterion (BIC). Thus, Eq. (D.14))
converges to the encoding of a normal distribution with mean and standard deviation
known plus log n. First, the encoding of a normal distribution with mean and standard
deviation known over n i.i.d. points is equal to the sum of the individual encodings:

L(Y | Θ̂) =
n

2
log 2π +

n

2
log σ̂2 +

 1

2σ̂2

n∑
i

(yi − µ̂)2

 log e. (E.1)

Second, we need to use the Stirling’s approximation of the Gamma function for large
n:

− log Γ

(
n

2

)
∼ −1

2
log π − 1

2
log (n− 2)−

(
n

2
− 1

)
log

(
n

2
− 1

)
+

(
n

2
− 1

)
log e,

(E.2)

148

and finally we insert it into Eq. (D.14) and assume τ = 1 to obtain:

L(Y) ∼

∼ 1 +
n− 1

2
log π +

1

2
log

(
n

n− 2

)
+
n

2
log

(
nσ̂2

n/2− 1

)
+

(
n

2
− 1

)
log e

+ log

(
n

2
− 1

)
+ Lcost(Y

|2)

∼ n

2
log π +

n

2
log 2σ̂2 +

 1

2σ̂2

n∑
i

(yi − µ)2

 log e+ log n− log e+ Lcost(Y
|2)

= L(Y | Θ̂) + log
n

e
+ Lcost(Y

|2)

∼ 1

2

(
2L(Y | Θ̂) + 2 log n− 2 log e

)
=

1

2
BIC,

(E.3)

where from the second to the third line, we assumed large n, making some of the
terms disappear, while the definition nσ̂2 =

∑n
i (yi − µ)2 is used for making the

third term of the third expression appear. From the fourth to the fifth expressions, it
assumes that Lcost(Y |2) is negligible, as it is the cost of not being able to encode the
first two points optimally. For the Bayes information criterion, we used its standard
definition,

BIC = −2 ln `(Θ | Y) + k lnn, (E.4)

where `(Θ | Y) is the likelihood as estimated from the data, and k is the number of
parameters, which in our case is 2.

F
Datasets used for classification

experiments

The 17 datasets used for classification are shown in Table F.1, and were retrieved from
LUCS/KDD1 repository. The datasets all have binary explanatory variables.

1http://cgi.csc.liv.ac.uk/~frans/KDD/Software/LUCS-KDD-DN/DataSets/dataSets.html

http://cgi.csc.liv.ac.uk/~frans/KDD/Software/LUCS-KDD-DN/DataSets/dataSets.html

150

Table F.1: Dataset properties: number of {samples, binary variables, classes, average
number of candidate patterns per fold for CLASSY with nmin. = 5% and dmax =

4}. The datasets are ordered first by number of classes and then by the number of
samples.

Dataset |D| |V | |Y| |Cands|

hepatitis 155 48 2 39137

ionosphere 351 155 2 332560

horsecolic 368 81 2 23552

cylBands 540 120 2 304749

breast 699 14 2 299

pima 768 34 2 543

tictactoe 958 26 2 1907

mushroom 8124 84 2 79602

adult 48842 96 2 7231

iris 150 14 3 144

wine 178 63 3 13439

waveform 5000 96 3 86889

heart 303 46 5 21876

pageblocks 5473 39 5 2902

led7 3200 22 10 2507

pendigits 10992 81 10 107001

chessbig 28056 54 18 1384

G
RSD supplementary empirical

evaluation

G.1 Datasets used for subgroup discovery experiments

The datasets selected are commonly used in machine learning and subgroup discov-
ery, and were retrieved from UCI [29], Keel [4], MULAN [117] repositories. The data-
sets for nominal and numeric targets experiments are in Table G.1 and G.2, respect-
ively.

152 G.1. Datasets used for subgroup discovery experiments

Table G.1: Nominal targets datasets for subgroup discovery: single-binary, single-
nominal and multi-label. Dataset properties: number of {target variables T ; target
labels |Y|; samples |D|; type of variables (nominal/numeric)}.

Dataset T |Y| |D| V (nom./num.)

sonar 1 2 208 (0/60)

haberman 1 2 306 (0/3)

breastCancer 1 2 683 (0/9)

australian 1 2 690 (0/14)

TicTacToe 1 2 958 (9/0)

german 1 2 1 000 (13/7)

chess 1 2 3 196 (36/0)

mushrooms 1 2 8 124 (22/0)

magic 1 2 19 020 (0/10)

adult 1 2 45 222 (8/6)

iris 1 3 150 (0/4)

balance 1 3 625 (0/4)

CMC 1 3 1 473 (0/9)

page-blocks 1 5 5 472 (0/10)

nursery 1 5 12 960 (7/1)

automobile 1 6 159 (10/15)

glass 1 6 214 (0/10)

dermatology 1 6 358 (0/34)

kr-vs-k 1 18 28 056 (6/0)

abalone 1 28 4 174 (1/7)

emotions 6 2 593 (0/72)

scene 6 2 2407 (0/294)

flags 7 2 194 (9/10)

yeast 14 2 2417 (0/103)

birds 19 2 645 (/258)

genbase 27 2 662 (1186/0)

mediamill 101 2 43 907 (0/120)

CAL500 174 2 502 (0/68)

Corel5k 374 2 5000 (499/0)

Appendix G. RSD supplementary empirical evaluation 153

Table G.2: Numeric targets datasets for subgroup discovery: single-numeric and multi-
numeric. Dataset properties: {number of target variables T ; minimum and maximum
target values [min.,max.]; number of samples |D|; number of type of variables (nom-
inal/numeric)}.

Dataset T [min.;max.] |D| V (nom./num.)

baseball 1 [109; 6100] 337 (4/12)

autoMPG8 1 [9; 46.6] 392 (0/6)

dee 1 [0.8; 5.1] 365 (0/6)

ele-1 1 [80; 7675] 495 (0/2)

forestFires 1 [0; 1091] 517 (0/12)

concrete 1 [3; 21] 1030 (0/8)

treasury 1 [29; 90] 1049 (0/15)

wizmir 1 [29; 90] 1461 (0/9)

abalone 1 [1; 29] 4177 (0/8)

puma32h 1 [−0.0867; 0.0898] 8192 (0/32)

ailerons 1 [−0.0036; 0] 13750 (0/40)

elevators 1 [0.012; 0.078] 16599 (0/18)

bikesharing 1 [1; 977] 17379 (2/10)

california 1 [14999; 500001] 20640 (0/8)

house 1 [0; 500001] 22784 (0/16)

edm 2 [−1; 1] 154 (0/16)

enb 2 [6.01; 48.03] 768 (0/8)

slump 3 [0; 78] 103 (0/7)

sf1 3 [0; 4] 323 (0/10)

sf2 3 [0; 8] 1066 (0/10)

jura 3 [0.135; 166.4] 359 (0/15)

osales 12 [500; 795000] 639 (0/413)

wq 14 [0; 5] 1060 (0/16)

oes97 16 [30; 48890] 334 (0/263)

oes10 16 [30; 64560] 403 (0/298)

154 G.2. Analysis of RSD compression gain hyperparameter

G.2 Analysis of RSD compression gain hyperparameter

In this section, we present a thorough comparison of the normalization term β of RSD,
where β = 1 is the normalized gain and β = 0 the absolute gain. RSD is executed
with the same hyperparameters (beam width, number of cut points for numerical
variables, and maximum depth of search) as in the experiments section, i.e., wb = 100,
ncut = 5, dmax = 5. The different types of gain are compared for all the benchmark
datasets described in the paper in terms of their compression ratio (defined later) in
Figure G.1, Sum of Weighted Kullback-Leibler divergency (SWKL) in Figure G.2, and
number of rules in Figure G.3. The compression ratio is the length of the found model
L(D,M) divided by the length of encoding the data with the dataset distribution (a
model without subroups) L(D | Θ̂d)

L% =
L(D,M)

L(D | Θ̂d)
(G.1)

son
ar

ha
be

rm
an

bre
ast

Can
cer

au
str

alia
n

Tic
Ta

cTo
e

ge
rm

an
che

ss

mush
roo

ms
mag

ic
ad

ult iris

ba
lan

ceCMC

pa
ge

-bl
ock

s

nu
rse

ry

au
tom

ob
ile

gla
ss

de
rm

ato
log

y
kr-

vs-
k

ab
alo

ne
0.0

0.2

0.4

0.6

0.8

1.0

co
m

pr
es

sio
n

ra
tio

= 1(normalized)
= 0.5
= 0 (absolute)

(a) Univariate nominal target.

ba
seb

all

au
toM

PG
8

de
e

ele
-1

for
est

Fir
es

con
cre

te

tre
asu

ry
wizm

ir

ab
alo

ne

pu
ma3

2h

aile
ron

s

ele
va

tor
s

bik
esh

ari
ng

cal
ifo

rni
a
ho

use
0.0

0.2

0.4

0.6

0.8

1.0

co
m

pr
es

sio
n

ra
tio

= 1(normalized)
= 0.5
= 0 (absolute)

(b) Univariate numeric target.

Figure G.1: Compression ratio obtained with β = 0 (absolute gain), β = 0.5, and
β = 1 (normalized gain).

Appendix G. RSD supplementary empirical evaluation 155

son
ar

ha
be

rm
an

bre
ast

Can
cer

au
str

alia
n

Tic
Ta

cTo
e

ge
rm

an
che

ss

mush
roo

ms
mag

ic
ad

ult iris

ba
lan

ceCMC

pa
ge

-bl
ock

s

nu
rse

ry

au
tom

ob
ile

gla
ss

de
rm

ato
log

y
kr-

vs-
k

ab
alo

ne
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

SW
KL

 (n
or

m
al

ize
d

pe
r |

D
|

= 1(normalized)
= 0.5
= 0 (absolute)

(a) Univariate nominal target.

ba
seb

all

au
toM

PG
8

de
e

ele
-1

for
est

Fir
es

con
cre

te

tre
asu

ry
wizm

ir

ab
alo

ne

pu
ma3

2h

aile
ron

s

ele
va

tor
s

bik
esh

ari
ng

cal
ifo

rni
a
ho

use
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

SW
KL

 (n
or

m
al

ize
d

pe
r |

D
|

= 1(normalized)
= 0.5
= 0 (absolute)

(b) Univariate numeric target.

Figure G.2: Normalized SWKL obtained with β = 0 (absolute gain), β = 0.5, and
β = 1 (normalized gain).

100

200

300

400
= 1(normalized)
= 0.5
= 0 (absolute)

son
ar

ha
be

rm
an

bre
ast

Can
cer

au
str

alia
n

Tic
Ta

cTo
e

ge
rm

an
che

ss

mush
roo

ms
mag

ic
ad

ult iris

ba
lan

ceCMC

pa
ge

-bl
ock

s

nu
rse

ry

au
tom

ob
ile

gla
ss

de
rm

ato
log

y
kr-

vs-
k

ab
alo

ne
0

10

20

30nu
m

be
r o

f r
ul

es

(a) Univariate nominal target.

100

200

300

400
= 1(normalized)
= 0.5
= 0 (absolute)

ba
seb

all

au
toM

PG
8

de
e

ele
-1

for
est

Fir
es

con
cre

te

tre
asu

ry
wizm

ir

ab
alo

ne

pu
ma3

2h

aile
ron

s

ele
va

tor
s

bik
esh

ari
ng

cal
ifo

rni
a
ho

use
0

10

20

30nu
m

be
r o

f r
ul

es

(b) Univariate numeric target.

Figure G.3: Number subgroups obtained with β = 0 (absolute gain), β = 0.5, and
β = 1 (normalized gain).

156 G.3. Analysis of RSD beam search hyperparameters

G.3 Analysis of RSD beam search hyperparameters

In this section, we present a thorough comparison of the beam search hyperparamet-
ers influence on RSD output. As a complete search over the whole combination of
hyperparameters is unfeasible, we present here an exploration over the hyperpara-
meters used for the experimental comparison in the paper (wb = 100, ncut = 5,
dmax = 5), i.e., we fix two of the parameters on the aforementioned values and then
proceed to change the selected hyperparameter of interest, and we do this for all the
3 parameters. The line between the dots of the same colour does not represent an
interpolation and is merely used to aid visualization and suggest trends.
Note on relative compression. It may seem that the values of the relative compression
remain constant but that is an illusion due to the scale of the y axis. As the com-
pression ratio is given by the division of large values (usually above the thousands)
its value with two decimal digits can be misleading. Nonetheless, in general, when
zooming over the figures one can discern a slight improvement (smaller values) for
larger values of the hyperparameters.

2 4 6 8 10
maximum depth

0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e

co
m

pr
es

sio
n

CMC
TicTacToe
abalone
adult
australian
automobile
balance
breastCancer
chess
dermatology
german
glass
haberman
iris
kr-vs-k
magic
mushrooms
nursery
page-blocks
sonar

(a) Univariate nominal target.

2 4 6 8 10
maximum depth

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

re
la

tiv
e

co
m

pr
es

sio
n

abalone
ailerons
autoMPG8
baseball
bikesharing
california
concrete
dee
ele-1
elevators
forestFires
house
puma32h
treasury
wizmir

(b) Univariate numeric target.

Figure G.4: Compression ratio obtained by varying the maximum search depth fixing
wb = 100, ncut = 5 and β = 1 (normalized gain). The black vertical line represents
the value used in the experiments section for subgroup lists (Section 5.3).

Appendix G. RSD supplementary empirical evaluation 157

2 4 6 8 10
maximum depth

1.0

1.5

2.0

2.5

3.0

3.5

4.0

av
er

ag
e

co
nd

iti
on

s p
er

 su
bg

ro
up

CMC
TicTacToe
abalone
adult
australian
automobile
balance
breastCancer
chess
dermatology
german
glass
haberman
iris
kr-vs-k
magic
mushrooms
nursery
page-blocks
sonar

(a) Univariate nominal target.

2 4 6 8 10
maximum depth

1

2

3

4

5

av
er

ag
e

co
nd

iti
on

s p
er

 su
bg

ro
up

abalone
ailerons
autoMPG8
baseball
bikesharing
california
concrete
dee
ele-1
elevators
forestFires
house
puma32h
treasury
wizmir

(b) Univariate numeric target.

Figure G.5: Average number of conditions per subgroup obtained by varying the max-
imum search depth fixing wb = 100, ncut = 5 and β = 1 (normalized gain). The black
vertical line represents the value used in the experiments section for subgroup lists
(Section 5.3).

100 101 102 103

beam width

0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e

co
m

pr
es

sio
n

CMC
TicTacToe
abalone
adult
australian
automobile
balance
breastCancer
chess
dermatology
german
glass
haberman
iris
kr-vs-k
magic
mushrooms
nursery
page-blocks
sonar

(a) Univariate nominal target.

100 101 102 103

beam width

0.3

0.4

0.5

0.6

0.7

0.8

0.9

re
la

tiv
e

co
m

pr
es

sio
n

abalone
ailerons
autoMPG8
baseball
bikesharing
california
concrete
dee
ele-1
elevators
forestFires
house
puma32h
treasury
wizmir

(b) Univariate numeric target.

Figure G.6: Compression ratio obtained by varying the beam width and fixing dmax =

5, ncut = 5 and β = 1 (normalized gain). The black vertical line represents the value
used in the experiments section for subgroup lists (Section 5.3).

158 G.3. Analysis of RSD beam search hyperparameters

2 3 4 5 6 7 8 9 10
number cutpoints

0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e

co
m

pr
es

sio
n

CMC
TicTacToe
abalone
adult
australian
automobile
balance
breastCancer
chess
dermatology
german
glass
haberman
iris
kr-vs-k
magic
mushrooms
nursery
page-blocks
sonar

(a) Univariate nominal target.

2 3 4 5 6 7 8 9 10
number cutpoints

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

re
la

tiv
e

co
m

pr
es

sio
n

abalone
ailerons
autoMPG8
baseball
bikesharing
california
concrete
dee
ele-1
elevators
forestFires
house
puma32h
treasury
wizmir

(b) Univariate numeric target.

Figure G.7: Compression ratio obtained by varying the number of cut points and fixing
wb = 100, dmax = 5 and β = 1 (normalized gain). The black vertical line represents
the value used in the experiments section for subgroup lists (Section 5.3).

Appendix G. RSD supplementary empirical evaluation 159

G.4 Results of non-sequential subgroup set discovery
algorithms

The comparison of RSD with subgroup set discovery algorithms that return sets (and
not lists) can be seen in Table G.3.

Table G.3: Single nominal target results for non-sequential methods plus RSD. This
includes single-binary, single-nominal, respectively separated by an horizontal line in
the table. The properties of the datasets can be seen in Table G.1, and are ordered
by number target variables, number of classes, and number of samples, in this order.
The evaluation measures are {quality of the subgroup set swkl; number of subgroups
|S|; and average number of conditions |a|}. Note that FSSD does not work for single-
nominal case and MCTS4DM only works for datasets with the same type of explan-
atory variables and thus the empty values −. *as DSSD has as stopping criteria the
maximum number of subgroups was selected as the number of subgroups found by
RSD, and total overlapping subgroups were posteriorly removed.

DSSD MCTS4DM FSSD RSD

datasets swkl |S|∗ |a| swkl |S| |a| swkl |S| |a| swkl |S| |a|
sonar 0.33 2 5 − − − 0.05 1 43 0.430.430.43 2 3

haberman 0.080.080.08 1 4 0.080.080.08 1 3 0.04 11 3 0.04 1 1

breastCancer 0.79 6 3 0.81 6 4 0.35 6 9 0.820.820.82 6 2

australian 0.50 3 3 0.54 7 6 0.33 15 12 0.550.550.55 5 2

tictactoe 0.50 4 3 − − − 0.20 5 3 0.870.870.87 16 2

german 0.150.150.15 4 5 − − − 0.10 6 11 0.14 4 3

chess 0.76 11 4 − − − 0.34 4 15 0.970.970.97 17 2

mushrooms 0.97 3 4 − − − 0.40 5 20 1.001.001.00 12 1

magic 0.30 40 3 − − − 0.06 3 10 0.470.470.47 69 4

adult 0.24 31 5 − − − 0.00 1 10 0.310.310.31 103 4

avg. rank 1.8 1.7 2.0 − − − 3.0 1.9 2.9 1.21.21.2 2.5 1.1

iris 1.44 3 2 1.451.451.45 4 3 − − − 1.44 4 1

balance 0.63 9 3 − − − − − − 0.690.690.69 9 3

CMC 0.18 7 3 0.16 20 4 − − − 0.250.250.25 7 2

page-blocks 0.36 19 3 − − − − − − 0.490.490.49 21 3

nursery 0.92 2 3 − − − − − − 1.631.631.63 81 3

automobile 0.85 5 5 − − − − − − 1.251.251.25 5 2

glass 1.55 3 1 1.12 5 6 − − − 1.921.921.92 5 1

dermatology 1.85 6 3 1.02 9 6 − − − 2.112.112.11 9 2

kr-vs-k 0.62 13 3 − − − − − − 1.831.831.83 351 3

abalone 0.53 14 3 − − − − − − 0.740.740.74 16 2

avg. rank 1.9 1.2 1.7 − − − − − 1.11.11.1 1.9 1.3

Bibliography

[1] The Bureau of Transportation Statistics (BTS), 2021. URL https://www.bts.

gov/.

[2] R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between sets
of items in large databases. In Acm sigmod record, volume 22, pages 207–216.
ACM, 1993.

[3] J. Alcala-Fdez, R. Alcala, and F. Herrera. A fuzzy association rule-based classi-
fication model for high-dimensional problems with genetic rule selection and
lateral tuning. IEEE Transactions on Fuzzy systems, 19(5):857–872, 2011.

[4] J. Alcalá-Fdez, A. Fernández, J. Luengo, J. Derrac, S. Garćıa, L. Sánchez, and
F. Herrera. Keel data-mining software tool: data set repository, integration of
algorithms and experimental analysis framework. Journal of Multiple-Valued
Logic & Soft Computing, 17, 2011.

[5] E. Angelino, N. Larus-Stone, D. Alabi, M. Seltzer, and C. Rudin. Learning certi-
fiably optimal rule lists. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 35–44. ACM, 2017.

[6] N. Antonio, A. de Almeida, and L. Nunes. Hotel booking demand datasets.
Data in brief, 22:41–49, 2019.

[7] J. O. Aoga, T. Guns, S. Nijssen, and P. Schaus. Finding probabilistic rule lists
using the minimum description length principle. In International Conference
on Discovery Science, pages 66–82. Springer, 2018.

https://www.bts.gov/
https://www.bts.gov/

162 Bibliography

[8] M. Atzmueller. Subgroup discovery. Wiley Interdisciplinary Reviews: Data Min-
ing and Knowledge Discovery, 5(1):35–49, 2015.

[9] A. Belfodil, A. Belfodil, and M. Kaytoue. Anytime subgroup discovery in numer-
ical domains with guarantees. In Joint European Conference on Machine Learn-
ing and Knowledge Discovery in Databases, pages 500–516. Springer, 2018.

[10] A. Belfodil, A. Belfodil, A. Bendimerad, P. Lamarre, C. Robardet, M. Kaytoue,
and M. Plantevit. Fssd-a fast and efficient algorithm for subgroup set discovery.
In Proceedings of DSAA 2019, 2019.

[11] E. Bellodi and F. Riguzzi. Structure learning of probabilistic logic programs by
searching the clause space. Theory and Practice of Logic Programming, 15(2):
169–212, 2015.

[12] M. Boley, B. R. Goldsmith, L. M. Ghiringhelli, and J. Vreeken. Identifying con-
sistent statements about numerical data with dispersion-corrected subgroup
discovery. Data Mining and Knowledge Discovery, 31(5):1391–1418, 2017.

[13] C. Borgelt. Efficient implementations of apriori and eclat. In FIMI’03: Proceed-
ings of the IEEE ICDM workshop on frequent itemset mining implementations,
2003.

[14] G. Bosc, J.-F. Boulicaut, C. Räıssi, and M. Kaytoue. Anytime discovery of a di-
verse set of patterns with monte carlo tree search. Data Mining and Knowledge
Discovery, 32(3):604–650, 2018.

[15] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and
regression trees. CRC press, 1984.

[16] B. Bringmann and A. Zimmermann. The chosen few: On identifying valu-
able patterns. In Seventh IEEE International Conference on Data Mining (ICDM
2007), pages 63–72. IEEE, 2007.

[17] K. H. Brodersen, C. S. Ong, K. E. Stephan, and J. M. Buhmann. The balanced
accuracy and its posterior distribution. In 2010 20th international conference
on pattern recognition, pages 3121–3124. IEEE, 2010.

[18] K. Budhathoki and J. Vreeken. The difference and the norm—characterising
similarities and differences between databases. In Proceedings of ECMLP-
KDD’15, pages 206–223. Springer, 2015.

[19] K. Budhathoki, M. Boley, and J. Vreeken. Discovering reliable causal rules.
arXiv preprint arXiv:2009.02728, 2020.

Bibliography 163

[20] T. Calders and S. Jaroszewicz. Efficient auc optimization for classification.
In European Conference on Principles of Data Mining and Knowledge Discovery,
pages 42–53. Springer, 2007.

[21] P. Clark and T. Niblett. The cn2 induction algorithm. Machine learning, 3(4):
261–283, 1989.

[22] W. W. Cohen. Fast effective rule induction. In Proceedings of the twelfth inter-
national conference on machine learning, pages 115–123, 1995.

[23] A.-W. De Leeuw, L. A. Meerhoff, and A. Knobbe. Effects of pacing properties
on performance in long-distance running. Big Data, 6(4):248–261, 2018.

[24] E. Delahoz-Dominguez, R. Zuluaga, and T. Fontalvo-Herrera. Dataset of aca-
demic performance evolution for engineering students. Data in Brief, page
105537, 2020.

[25] J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal
of Machine learning research, 7(Jan):1–30, 2006.

[26] F. Doshi-Velez and B. Kim. Towards a rigorous science of interpretable machine
learning. arXiv:1702.08608 [stat.ML], 2017.

[27] F. Doshi-Velez and B. Kim. Considerations for evaluation and generalization
in interpretable machine learning. In Explainable and Interpretable Models in
Computer Vision and Machine Learning, pages 3–17. Springer, 2018.

[28] X. Du, Y. Pei, W. Duivesteijn, and M. Pechenizkiy. Exceptional spatio-temporal
behavior mining through bayesian non-parametric modeling. Data Mining and
Knowledge Discovery, 34(5):1267–1290, 2020.

[29] D. Dua and C. Graff. UCI machine learning repository, 2017. URL http:

//archive.ics.uci.edu/ml.

[30] W. Duivesteijn and A. Knobbe. Exploiting false discoveries–statistical valida-
tion of patterns and quality measures in subgroup discovery. In 2011 IEEE 11th
International Conference on Data Mining, pages 151–160. IEEE, 2011.

[31] W. Duivesteijn, A. Knobbe, A. Feelders, and M. van Leeuwen. Subgroup discov-
ery meets bayesian networks–an exceptional model mining approach. In 2010
IEEE International Conference on Data Mining, pages 158–167. IEEE, 2010.

[32] W. Duivesteijn, A. J. Feelders, and A. Knobbe. Exceptional model mining. Data
Mining and Knowledge Discovery, 30(1):47–98, 2016.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

164 Bibliography

[33] T. Fawcett. An introduction to roc analysis. Pattern recognition letters, 27(8):
861–874, 2006.

[34] A. Fernandez, V. Lopez, M. J. del Jesus, and F. Herrera. Revisiting evolutionary
fuzzy systems: Taxonomy, applications, new trends and challenges. Knowledge-
Based Systems, 80:109–121, 2015.

[35] J. Fischer and J. Vreeken. Sets of robust rules, and how to find them. In
Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, pages 38–54. Springer, 2019.

[36] J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning,
volume 1. Springer series in statistics New York, 2001.

[37] M. Friedman. The use of ranks to avoid the assumption of normality implicit
in the analysis of variance. Journal of the american statistical association, 32
(200):675–701, 1937.

[38] J. Fürnkranz. Separate-and-conquer rule learning. Artificial Intelligence Review,
13(1):3–54, 1999.

[39] J. Fürnkranz, D. Gamberger, and N. Lavrač. Foundations of rule learning.
Springer Science & Business Media, 2012.

[40] E. Galbrun. The minimum description length principle for pattern mining: A
survey. arXiv preprint arXiv:2007.14009, 2020.

[41] M. Garćıa-Borroto, J. F. Mart́ınez-Trinidad, and J. A. Carrasco-Ochoa. A survey
of emerging patterns for supervised classification. Artificial Intelligence Review,
42(4):705–721, 2014.

[42] A. Gelman, H. S. Stern, J. B. Carlin, D. B. Dunson, A. Vehtari, and D. B. Rubin.
Bayesian data analysis. Chapman and Hall/CRC, 2013.

[43] B. R. Goldsmith, M. Boley, J. Vreeken, M. Scheffler, and L. M. Ghiringhelli. Un-
covering structure-property relationships of materials by subgroup discovery.
New Journal of Physics, 19(1):013031, 2017.

[44] M. Gönen, W. O. Johnson, Y. Lu, and P. H. Westfall. The bayesian two-sample
t test. The American Statistician, 59(3):252–257, 2005.

[45] H. Grosskreutz and S. Rüping. On subgroup discovery in numerical domains.
Data Min. Knowl. Discov., 19(2):210–226, 2009.

Bibliography 165

[46] H. Grosskreutz, D. Paurat, and S. Rüping. An enhanced relevance criterion
for more concise supervised pattern discovery. In Proceedings of the 18th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages
1442–1450, 2012.

[47] P. Grünwald and T. Roos. Minimum description length revisited. International
Journal of Mathematics for Industry, 11(1), 2019.

[48] P. D. Grünwald. The minimum description length principle. MIT press, 2007.

[49] W. Hämäläinen. Kingfisher: an efficient algorithm for searching for both pos-
itive and negative dependency rules with statistical significance measures.
Knowledge and information systems, 32(2):383–414, 2012.

[50] W. Hämäläinen and G. I. Webb. Specious rules: an efficient and effective unify-
ing method for removing misleading and uninformative patterns in association
rule mining. In Proceedings of the 2017 SIAM International Conference on Data
Mining, pages 309–317. SIAM, 2017.

[51] W. Hämäläinen and G. I. Webb. A tutorial on statistically sound pattern dis-
covery. Data Mining and Knowledge Discovery, 33(2):325–377, 2019.

[52] F. Herrera, C. J. Carmona, P. González, and M. J. Del Jesus. An overview on
subgroup discovery: foundations and applications. Knowledge and information
systems, 29(3):495–525, 2011.

[53] F. Herrera, F. Charte, A. J. Rivera, and M. J. Del Jesus. Multilabel classification.
In Multilabel Classification, pages 17–31. Springer, 2016.

[54] S. Holm. A simple sequentially rejective multiple test procedure. Scandinavian
journal of statistics, pages 65–70, 1979.

[55] J. Hühn and E. Hüllermeier. Furia: an algorithm for unordered fuzzy rule
induction. Data Mining and Knowledge Discovery, 19(3):293–319, 2009.

[56] J. Huysmans, K. Dejaeger, C. Mues, J. Vanthienen, and B. Baesens. An empir-
ical evaluation of the comprehensibility of decision table, tree and rule based
predictive models. Decision Support Systems, 51(1):141–154, 2011.

[57] R. L. Iman and J. M. Davenport. Approximations of the critical region of the
fbietkan statistic. Communications in Statistics-Theory and Methods, 9(6):571–
595, 1980.

[58] H. Jeffreys. The theory of probability. OUP Oxford, 1998.

166 Bibliography

[59] F. Jiménez, G. Sánchez, and J. M. Juárez. Multi-objective evolutionary al-
gorithms for fuzzy classification in survival prediction. Artificial intelligence in
medicine, 60(3):197–219, 2014.

[60] N. Jin, P. Flach, T. Wilcox, R. Sellman, J. Thumim, and A. Knobbe. Subgroup
discovery in smart electricity meter data. IEEE Transactions on Industrial In-
formatics, 10(2):1327–1336, 2014.

[61] R. E. Kass and A. E. Raftery. Bayes factors. Journal of the american statistical
association, 90(430):773–795, 1995.

[62] D. Klabjan. Large-scale models in the airline industry. In Column generation,
pages 163–195. Springer, 2005.

[63] W. Klösgen. Explora: A multipattern and multistrategy discovery assistant. In
Advances in Knowledge Discovery and Data Mining, pages 249–271. 1996.

[64] A. J. Knobbe and E. K. Ho. Pattern teams. In European Conference on Principles
of Data Mining and Knowledge Discovery, pages 577–584. Springer, 2006.

[65] P. Kontkanen, P. Myllymäki, W. Buntine, J. Rissanen, and H. Tirri. An mdl
framework for data clustering. Minimum, page 323, 2005.

[66] S. Kullback and R. A. Leibler. On information and sufficiency. The annals of
mathematical statistics, 22(1):79–86, 1951.

[67] H. Lakkaraju and C. Rudin. Learning cost-effective and interpretable treatment
regimes for judicial bail decisions. arXiv preprint arXiv:1610.06972, 2016.

[68] H. Lakkaraju and C. Rudin. Learning cost-effective and interpretable treatment
regimes. In Artificial Intelligence and Statistics, 2017.

[69] H. Lakkaraju, S. H. Bach, and J. Leskovec. Interpretable decision sets: A joint
framework for description and prediction. In Proceedings of KDD’16, pages
1675–1684. ACM, 2016.

[70] N. Lavrač, P. Flach, and B. Zupan. Rule evaluation measures: A unifying view.
In International Conference on Inductive Logic Programming, pages 174–185.
Springer, 1999.

[71] N. Lavrač, B. Kavšek, P. Flach, and L. Todorovski. Subgroup discovery with
cn2-sd. Journal of Machine Learning Research, 5(Feb):153–188, 2004.

[72] M. van Leeuwen. Maximal exceptions with minimal descriptions. Data Mining
and Knowledge Discovery, 21(2):259–276, 2010.

Bibliography 167

[73] M. van Leeuwen and E. Galbrun. Association discovery in two-view data. IEEE
Transactions on Knowledge and Data Engineering, 27(12):3190–3202, 2015.

[74] M. van Leeuwen and A. Knobbe. Non-redundant subgroup discovery in large
and complex data. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 459–474. Springer, 2011.

[75] M. van Leeuwen and A. Knobbe. Diverse subgroup set discovery. Data Mining
and Knowledge Discovery, 25(2):208–242, 2012.

[76] M. van Leeuwen and A. Ukkonen. Discovering skylines of subgroup sets. In
Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, pages 272–287. Springer, 2013.

[77] M. van Leeuwen and A. Ukkonen. Expect the unexpected–on the significance
of subgroups. In International Conference on Discovery Science, pages 51–66.
Springer, 2016.

[78] M. van Leeuwen and J. Vreeken. Mining and using sets of patterns through
compression. In Frequent Pattern Mining, pages 165–198. Springer, 2014.

[79] D. Leman, A. Feelders, and A. Knobbe. Exceptional model mining. In Joint
European conference on machine learning and knowledge discovery in databases,
pages 1–16. Springer, 2008.

[80] F. Lemmerich, M. Atzmueller, and F. Puppe. Fast exhaustive subgroup discov-
ery with numerical target concepts. Data Mining and Knowledge Discovery, 30
(3):711–762, 2016.

[81] B. Letham, C. Rudin, T. H. McCormick, D. Madigan, et al. Interpretable clas-
sifiers using rules and bayesian analysis: Building a better stroke prediction
model. The Annals of Applied Statistics, 9(3):1350–1371, 2015.

[82] W. Li, J. Han, and J. Pei. Cmar: Accurate and efficient classification based on
multiple class-association rules. In Data Mining, 2001. ICDM 2001, Proceedings
IEEE International Conference on, pages 369–376. IEEE, 2001.

[83] J. Lijffijt, B. Kang, W. Duivesteijn, K. Puolamaki, E. Oikarinen, and T. De Bie.
Subjectively interesting subgroup discovery on real-valued targets. In 2018
IEEE ICDE, pages 1352–1355. IEEE, 2018.

[84] Y. Lou, R. Caruana, and J. Gehrke. Intelligible models for classification and
regression. In Proceedings KDD’12, pages 150–158. ACM, 2012.

168 Bibliography

[85] B. L. W. H. Y. Ma and B. Liu. Integrating classification and association rule min-
ing. In Proceedings of the fourth international conference on knowledge discovery
and data mining, 1998.

[86] T. Makhalova, S. O. Kuznetsov, and A. Napoli. Mint: Mdl-based approach for
mining interesting numerical pattern sets. arXiv preprint arXiv:2011.14843,
2020.

[87] M. Meeng and A. Knobbe. Flexible enrichment with cortana–software demo.
In Proceedings of BeneLearn, pages 117–119, 2011.

[88] M. Meeng and A. Knobbe. For real: a thorough look at numeric attributes in
subgroup discovery. Data Mining and Knowledge Discovery, pages 1–55, 2020.

[89] M. Meeng, H. de Vries, P. Flach, S. Nijssen, and A. Knobbe. Uni-and multivari-
ate probability density models for numeric subgroup discovery. Intelligent Data
Analysis, 24(6):1403–1439, 2020.

[90] T. Mielikäinen and H. Mannila. The pattern ordering problem. In European
Conference on Principles of Data Mining and Knowledge Discovery, pages 327–
338. Springer, 2003.

[91] C. Molnar. Interpretable machine learning. A Guide for Making Black Box
Models Explainable, 2018.

[92] T. Mononen and P. Myllymäki. Computing the multinomial stochastic com-
plexity in sub-linear time. In Proceedings of the 4th European Workshop on
Probabilistic Graphical Models, pages 209–216, 2008.

[93] I. J. Myung. Tutorial on maximum likelihood estimation. Journal of mathem-
atical Psychology, 47(1):90–100, 2003.

[94] E. B. Peterson, K. Neels, N. Barczi, and T. Graham. The economic cost of airline
flight delay. Journal of Transport Economics and Policy (JTEP), 47(1):107–121,
2013.

[95] I. Polaka, E. Gašenko, O. Barash, H. Haick, and M. Leja. Constructing inter-
pretable classifiers to diagnose gastric cancer based on breath tests. Procedia
Computer Science, 104, 2017.

[96] H. M. Proença and M. van Leeuwen. Interpretable multiclass classification by
mdl-based rule lists. Information Sciences, 512:1372–1393, 2020.

Bibliography 169

[97] H. M. Proença, S. M. Vieira, U. Kaymak, R. J. Almeida, and J. M. Sousa. Op-
timizing probabilistic fuzzy systems for classification using metaheuristics. In
2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pages 1635–
1641. IEEE, 2016.

[98] H. M. Proença, R. Klijn, T. Bäck, and M. van Leeuwen. Identifying flight delay
patterns using diverse subgroup discovery. In 2018 IEEE SSCI, pages 60–67.
IEEE, 2018.

[99] H. M. Proença, P. Grünwald, T. Bäck, and M. van Leeuwen. Discovering out-
standing subgroup lists for numeric targets using mdl. In Joint European Con-
ference on Machine Learning and Knowledge Discovery in Databases, pages 19–
35. Springer, 2020.

[100] H. M. Proença, T. Bäck, and M. van Leeuwen. Robust subgroup discovery. arXiv
preprint arXiv:2103.13686, 2021.

[101] H. M. Proença, T. Bäck, and M. van Leeuwen. Robust subgroup discovery.
Data Mining and Knowledge Discovery (preprint available in arXiv:2103.13686),
submitted.

[102] F. Provost and P. Domingos. Well-trained pets: Improving probability estima-
tion trees. 2000.

[103] J. R. Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

[104] M. T. Ribeiro, S. Singh, and C. Guestrin. ” why should i trust you?” explaining
the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD inter-
national conference on knowledge discovery and data mining, pages 1135–1144,
2016.

[105] M. T. Ribeiro, S. Singh, and C. Guestrin. Anchors: High-precision model-
agnostic explanations. In Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence (AAAI), 2018.

[106] R. Rifkin and A. Klautau. In defense of one-vs-all classification. The Journal of
Machine Learning Research, 5:101–141, 2004.

[107] J. Rissanen. Modeling by shortest data description. Automatica, 14(5), 1978.

[108] J. Rissanen. A universal prior for integers and estimation by minimum descrip-
tion length. The Annals of statistics, pages 416–431, 1983.

[109] R. L. Rivest. Learning decision lists. Machine learning, 2(3):229–246, 1987.

170 Bibliography

[110] J. N. Rouder, P. L. Speckman, D. Sun, R. D. Morey, and G. Iverson. Bayesian
t tests for accepting and rejecting the null hypothesis. Psychonomic bulletin &
review, 16(2):225–237, 2009.

[111] C. Rudin. Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nature Machine Intelligence, 1
(5):206–215, 2019.

[112] C. M. Salgado, C. Azevedo, H. Proença, and S. M. Vieira. Missing data. Sec-
ondary analysis of electronic health records, pages 143–162, 2016.

[113] C. M. Salgado, C. Azevedo, H. Proença, and S. M. Vieira. Noise versus outliers.
Secondary analysis of electronic health records, pages 163–183, 2016.

[114] C. E. Shannon. A mathematical theory of communication. Bell system technical
journal, 27(3):379–423, 1948.

[115] Y. M. Shtar’kov. Universal sequential coding of single messages. Problemy
Peredachi Informatsii, 23(3):3–17, 1987.

[116] A. Siebes. Data surveying: Foundations of an inductive query language. In
KDD, pages 269–274, 1995.

[117] G. Tsoumakas, E. Spyromitros-Xioufis, J. Vilcek, and I. Vlahavas. Mulan: A
java library for multi-label learning. Journal of Machine Learning Research, 12:
2411–2414, 2011.

[118] J. W. Tukey. Exploratory data analysis, volume 2. Reading, MA, 1977.

[119] V. Vapnik. The nature of statistical learning theory. Springer science & business
media, 2013.

[120] J. Vreeken, M. van Leeuwen, and A. Siebes. Krimp: mining itemsets that com-
press. Data Mining and Knowledge Discovery, 23(1):169–214, 2011.

[121] J. Wang and G. Karypis. Harmony: Efficiently mining the best rules for clas-
sification. In Proceedings of the 2005 SIAM International Conference on Data
Mining, pages 205–216. SIAM, 2005.

[122] T. Wang, C. Rudin, F. Velez-Doshi, Y. Liu, E. Klampfl, and P. MacNeille.
Bayesian rule sets for interpretable classification. In Data Mining (ICDM), 2016
IEEE 16th International Conference on, pages 1269–1274. IEEE, 2016.

[123] G. I. Webb. Opus: An efficient admissible algorithm for unordered search.
Journal of Artificial Intelligence Research, 3:431–465, 1995.

Bibliography 171

[124] G. I. Webb. Discovering significant patterns. Machine Learning, 68(1):1–33,
2007.

[125] H. Yang, C. Rudin, and M. Seltzer. Scalable bayesian rule lists. In Proceedings of
the 34th International Conference on Machine Learning-Volume 70, pages 3921–
3930. JMLR. org, 2017.

[126] J. Zeng, B. Ustun, and C. Rudin. Interpretable classification models for recidiv-
ism prediction. Journal of the Royal Statistical Society: Series A (Statistics in
Society), 180(3), 2017.

[127] X. Zhang, G. Dong, and K. Ramamohanarao. Information-based classification
by aggregating emerging patterns. In IDEAL, pages 48–53. Springer, 2000.

[128] A. Zimmermann and S. Nijssen. Supervised pattern mining and applications
to classification. In Frequent Pattern Mining. Springer, 2014.

Samenvatting

Regels bieden een eenvoudige vorm voor het opslaan en delen van informatie over
de wereld. Als mensen gebruiken we elke dag regels. Een arts die iemand met griep
diagnosticeert, gebruikt bijvoorbeeld de regel: ”als een persoon koorts of keelpijn
heeft, dan heeft hij of zij griep”. Hoewel een individuele regel alleen eenvoudige
gebeurtenissen kan beschrijven, kunnen verschillende, geaggregeerde regels geza-
menlijk complexere scenario’s beschrijven, zoals de volledige set diagnostische regels
die (impliciet) door een arts worden gebruikt.

Gezien het veelvuldige gebruik van regels in verschillende domeinen, is het geen
verrassing dat op regels gebaseerde modellen tot een van de eerstegebruikte tech-
nieken behoorden om computers uit te rusten met besluitvormingsmechanismen.
Oorspronkelijk voerden mensen regels rechtstreeks in een computersysteem in; met
de beschikbaarheid van grote hoeveelheden data verschoof de interesse naar het leren
van regels uit data. De elektronische dossiers van een arts, waarin is vastgelegd of
zijn patienten wel of geen griep hebben op basis van hun symptomen, kunnen bij-
voorbeeld gebruikt worden om het besluitvormingsproces van de desbetreffende arts
te achterhalen.

Het gebruik van regels omvat vele gebieden in de informatica; in dit proefschrift
richten we ons op de op regels gebaseerde modellen voor machine learning en datamin-
ing. Machine learning is erop gericht om op basis van data het model te leren dat
toekomstige (niet eerder waargenomen) gebeurtenissen het beste voorspelt. Datamin-
ing heeft als doel om interessante patronen te vinden in de beschikbare data. In het
bijzonder richten we ons op de volgende onderzoeksvraag: “Hoe leren we robuuste
en interpreteerbare op regels gebaseerde modellen van data voor machine learning
en datamining, en definiëren we het optimale model?”

174 Samenvatting

Om deze vraag te beantwoorden gebruiken we het Minimum Description Length
(MDL) principe, waarmee we de optimaliteit van op regels gebaseerde modellen voor
een bepaalde dataset kunnen bepalen. Informeel is het beste model voor een spe-
cifieke dataset het eenvoudigste model dat de data goed beschrijft. De specifieke mod-
elklasse waarop we ons concentreren zijn zogenaamde regellijsten, d.w.z. geordende
verzamelingen regels die opeenvolgend worden gëınterpreteerd. Helaas is het vinden
van een optimaal model in de meeste gevallen computationeel onhaalbaar. Daarom
stellen we heuristische algoritmen voor die goede modellen vinden en daarbij enkele
garanties geven. We testen onze algoritmen empirisch om onze aanpak te valideren,
en laten zien dat ze in de meeste gevallen beter of vergelijkbaar presteren in vergelijk-
ing met de state of the art.

Summary

Rules provide a simple form of storing and sharing information about the world. As
humans, we use rules every day, such as the physician that diagnoses someone with
flu, represented by “if a person has either a fever or sore throat (among others), then
she has the flu.”. Even though an individual rule can only describe simple events, sev-
eral aggregated rules can describe more complex scenarios, such as the complete set
of diagnostic rules employed by a physician.

Given their abundant use, it is no surprise that rule-based models were some of the
first techniques used to equip computers with decision-making capabilities. In the
beginning, humans entered rules directly into computer systems; however, with the
availability of large amounts of data, the interest shifted to learning rules from data.
For example, the records of a physician’s diagnoses of patients who either have flu
or not based on their symptoms can be used to learn that doctor’s decision-making
process. The use of rules spans many fields in computer science, and in this disserta-
tion, we focus on rule-based models for machine learning and data mining. Machine
learning focuses on learning from data the model that best predicts future (previously
unseen) events. Data mining aims to find interesting patterns in the available data.
Specifically, we are concerned with the research question: “How to learn robust and
interpretable rule-based models from data for machine learning and data mining, and
define their optimality?”

To answer such a question, we employ the Minimum Description Length (MDL) prin-
ciple, which allows us to define the optimality of rule-based models for a particular
dataset. Informally, the best model for a specific dataset is the simplest one that de-
scribes the data well. The specific model class we focus on is the rule list, i.e., an
ordered set of rules that are interpreted sequentially. Nonetheless, finding an op-

176 Summary

timal model is computationally infeasible in most cases. Thus, we propose heuristic
algorithms that find good models with some guarantees. We test our algorithms em-
pirically to validate our approach and show that they achieve, in most cases, better or
similar performance to the state-of-the-art in machine learning and data mining.

Resumo

Regras são uma forma simples de armazenar e partilhar informação sobre o mundo.
Como seres humanos, usamos regras todos os dias, tal como o médico que diagnost-
ica alguém com gripe, representada da forma “se uma pessoa tem febre ou dor de
garganta (entre outras aflições), então ela tem gripe.”. Embora uma regra só possa
descrever eventos simples, o agregamento de várias regras pode descrever cenários
mais complexos, como o conjunto de todas as regras de diagnóstico usadas por um
médico.

Dado seu uso abundante, não é surpresa que os modelos baseados em regras ten-
ham sido umas das primeiras técnicas usadas para equipar computadores com poder
de decisão. Inicialmente, as pessoas inseriam as regras diretamente nos sistemas dos
computadores; no entanto, com a disponibilidade de grandes quantidades de dados,
o interesse voltou-se para aprender regras a partir dos dados. Por exemplo, os re-
latórios de diagnósticos de um médico sobre se os seus pacientes têm ou não gripe
com base nos seus sintomas podem ser usados para aprender o processo de tomada de
decisão desse mesmo médico. O uso de regras abrange muitos campos da ciência da
computação e, nesta dissertação, focamo-nos em modelos baseados em regras para
as áreas de aprendizagem de máquina e prospecção de dados. A aprendizagem de
máquina dedica-se a aprender o modelo que melhor prevê eventos futuros (não vis-
tos até então) a partir dos dados. A prospecção de dados visa encontrar padrões
interessantes nos dados dispońıveis. Mais concretamente, estamos preocupados com
a seguinte questão cient́ıfica: “ Como aprender a partir dos dados modelos baseados
em regras que sejam robustos e interpretáveis nas áreas de aprendizagem de máquina
e prospeção de dados, e definir a sua proximidade ao óptimo? ”

Para responder a essa questão, empregamos o prinćıpio da Descrição de Comprimento

178 Resumo

Mı́nimo (MDL em inglês), que nos permite definir quão óptimos são os modelos
baseados em regras para um conjunto de dados especifico. Informalmente, o melhor
modelo para um conjunto de dados espećıfico é o modelo mais simples que melhor
descreve os dados. A classe de modelo espećıfica em que nos focamos é chamado
lista de regras, ou seja, um conjunto ordenado de regras que têm de ser interpretadas
sequencialmente. No entanto, encontrar um modelo óptimo é computacionalmente
imposśıvel na maioria dos casos. Por isso, propomos heuŕısticas que descobrem bons
modelos mantendo algumas das garantias originais. Os nossos algoritmos foram em-
piricamente testados, validando desta forma a nossa abordagem e mostrando, na
maioria dos casos, que eles atingem um desempenho melhor ou semelhante ao es-
tado da arte em aprendizagem de máquina e prospeção de dados.

List of publications

1. H. M. Proença, S. M. Vieira, U. Kaymak, R. J. Almeida, and J. M. Sousa. Optim-
izing probabilistic fuzzy systems for classification using metaheuristics. In 2016
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pages 1635–1641.
IEEE, 2016

2. C. M. Salgado, C. Azevedo, H. Proença, and S. M. Vieira. Missing data. Second-
ary analysis of electronic health records, pages 143–162, 2016

3. C. M. Salgado, C. Azevedo, H. Proença, and S. M. Vieira. Noise versus outliers.
Secondary analysis of electronic health records, pages 163–183, 2016

4. H. M. Proença, R. Klijn, T. Bäck, and M. van Leeuwen. Identifying flight delay
patterns using diverse subgroup discovery. In 2018 IEEE SSCI, pages 60–67.
IEEE, 2018

5. H. M. Proença and M. van Leeuwen. Interpretable multiclass classification by
mdl-based rule lists. Information Sciences, 512:1372–1393, 2020

6. H. M. Proença, P. Grünwald, T. Bäck, and M. van Leeuwen. Discovering out-
standing subgroup lists for numeric targets using mdl. In Joint European Confer-
ence on Machine Learning and Knowledge Discovery in Databases, pages 19–35.
Springer, 2020

7. H. M. Proença, T. Bäck, and M. van Leeuwen. Robust subgroup discovery. Data
Mining and Knowledge Discovery (preprint available in arXiv:2103.13686), sub-
mitted

Acknowledgements

Even though this dissertation only bears one name, it is dedicated to all that I have
met on my path. I could not have done it alone; thank you to everyone that in some
way contributed to this work.

The first praises go to my supervisor, Matthijs van Leeuwen, whose guidance helped
me transverse the sinuous paths of research. You not only inspired me as a researcher,
but as a person. I could always count on you, both professionally and personally. You
have never pre-emptively judged my choices and I am deeply honoured to have been
your student.
Secondly, I would like to thank my promotor, Thomas Bäck. Thank you for accepting
an unknown Portuguese student as your PhD student. You always trusted me to make
the right decisions and allowed me to pursue my research without impediments. Des-
pite your busy schedule, your door was always open when I needed you.

As a part of an Indian-Dutch collaboration, I was able to hone my research skills
with international experts and delve into my fascination of the Indian culture. First, I
would like to thank Dhish Saxena, Arioli Arumugam, and Rajesh Alla, for welcoming
me so warmly. A special thanks to Divyam and Sarang, that besides my colleagues
became close friends. Divyam, thank you for guiding me through Roorkee and Ban-
galore. Sarang Kapoor, thank you for all the spirited research sparring. Finally, thank
you Michael Emmerich for all the fond memories from our trips to India.

Throughout my PhD, I had the pleasure to work with amazing researchers. I would
like to thank João Sousa and Susana Viera, for their initial support; Peter Grünwald,
for always keeping the door open for my questions; Antti Ukkonen, for the brain-
storming sessions; Alexandros Agapitos, whose ambitious ideas were contagious; and

182 Acknowledgements

David Lynch, for being the best remote colleague.

LIACS is a special place, where welcoming colleagues swiftly become your friends. I
would like to thank everyone that was part of NACO, EDA, and the coffee club. In
particular, I would like to thank: Ricardo Cachucho, for advising me even before I
arrived in Leiden; Marvin, for always being ready to hear; Jan, for bringing me to
the infamous gladiator workout; Irene, my first office mate; Daniela, for sharing the
hectic organization of a digital conference; Sander, for the rough start that turned out
into a good relationship; Theodoros, my faithful companion of existential PhD discus-
sions; Lise, for our nonsensical chats in Dutch-Portuguese; Peter, for the philosophical
discussions; Cláudio, for hosting me; and Lincen, for the MDL discussions.

While abroad, your friends are an intrinsic part of your success, and slowly they be-
come part of your family.
I was lucky to have lived at Zoe, the affectionate name we gave our house, for four
years. In it everyone shared meals, laughter, and stories. I would especially like to
thank: Esther Weigmann, for becoming such a close friend; Justina Gabrielaityte, for
all the laughter and potato dinners you brought; Lorenzo Pasqualleto, for turning an
ordinary moment into an unforgettable experience; Andreas Pedersen, for the trips
where you got sunburned when I did not; and Léa-Rose, for always bringing banal
conversations to the next level. Also, as honorary guests of the house, I would like
to thank Bart Bezemer, my tea and chess companion; Neda Malkawi, with whom I
share fascination for Thai massages; and Alberto Ferraresso, for judging the parking
of bicycles with me.
Depois, há o meu grupo de amigos portugueses em Leiden, que sempre me fizeram
sentir em casa. Eu gostaria de agradecer ao: Nuno, por estar lá desde o ińıcio; Vasco,
porque sempre pude bater à tua porta; Inês, por fazeres sempre um pão extra; Ricardo
Castro, pela tua honestidade; João Cunha, por não sabermos conversar por pouco
tempo; Cátia, por teres energia para mover o mundo; Paulo, o meu conterrâneo;
Tiago Jorge; Tiago Cabrita; Bruno; e Helena Morais.
Finalmente, muchas gracias Laura por ser el apoyo que mejoró mi vida. ¡Gracias por
organizar esas copas donde te conoćı!

Then there are all the friends that even away, were always present. Thank you Joa-
quim Viegas, for being the best organizer of any event; Cátia, for inviting me to the
swimming pool; Cigin, for our yearly meetings; Miguel Reis, for sharing the same
passion for growth; António Coutinho, for all the Bayesian deliberations; Madalina,
for sharing your best moments; Daniel Matos, for being always there; and Gonçalo
Guiomar, for the long conversations.

Acknowledgements 183

Finalmente, quero agradecer o apoio incondicional da minha famı́lia: aos meus pais,
Maria e Francisco, sem os quais nada teria sido posśıvel; a minha irmã Carolina; a
minha sobrinha Malu; aos meus tios Ivone, Angélica, e João; e à memória do meu
primo Jorge. Por último, obrigado à minha famı́lia nos páıses baixos Marie-Helene,
Christophe, Maxence, and Gautier.

Obrigado!

Titles in the SIKS dissertation series
since 2011

2011 01 Botond Cseke (RUN), Variational Algorithms for Bayesian Inference in
Latent Gaussian Models

02 Nick Tinnemeier (UU), Organizing Agent Organizations. Syntax and Op-
erational Semantics of an Organization-Oriented Programming Language

03 Jan Martijn van der Werf (TUE), Compositional Design and Verification
of Component-Based Information Systems

04 Hado van Hasselt (UU), Insights in Reinforcement Learning; Formal ana-
lysis and empirical evaluation of temporal-difference

05 Bas van der Raadt (VU), Enterprise Architecture Coming of Age - Increas-
ing the Performance of an Emerging Discipline.

06 Yiwen Wang (TUE), Semantically-Enhanced Recommendations in Cul-
tural Heritage

07 Yujia Cao (UT), Multimodal Information Presentation for High Load Hu-
man Computer Interaction

08 Nieske Vergunst (UU), BDI-based Generation of Robust Task-Oriented
Dialogues

09 Tim de Jong (OU), Contextualised Mobile Media for Learning
10 Bart Bogaert (UvT), Cloud Content Contention
11 Dhaval Vyas (UT), Designing for Awareness: An Experience-focused HCI

Perspective
12 Carmen Bratosin (TUE), Grid Architecture for Distributed Process Mining
13 Xiaoyu Mao (UvT), Airport under Control. Multiagent Scheduling for Air-

port Ground Handling

186 Titles in SIKS

14 Milan Lovric (EUR), Behavioral Finance and Agent-Based Artificial Mar-
kets

15 Marijn Koolen (UvA), The Meaning of Structure: the Value of Link Evid-
ence for Information Retrieval

16 Maarten Schadd (UM), Selective Search in Games of Different Complex-
ity

17 Jiyin He (UVA), Exploring Topic Structure: Coherence, Diversity and Re-
latedness

18 Mark Ponsen (UM), Strategic Decision-Making in complex games
19 Ellen Rusman (OU), The Mind’s Eye on Personal Profiles
20 Qing Gu (VU), Guiding service-oriented software engineering - A view-

based approach
21 Linda Terlouw (TUD), Modularization and Specification of Service-

Oriented Systems
22 Junte Zhang (UVA), System Evaluation of Archival Description and Ac-

cess
23 Wouter Weerkamp (UVA), Finding People and their Utterances in Social

Media
24 Herwin van Welbergen (UT), Behavior Generation for Interpersonal Co-

ordination with Virtual Humans On Specifying, Scheduling and Realizing
Multimodal Virtual Human Behavior

25 Syed Waqar ul Qounain Jaffry (VU), Analysis and Validation of Models
for Trust Dynamics

26 Matthijs Aart Pontier (VU), Virtual Agents for Human Communication -
Emotion Regulation and Involvement-Distance Trade-Offs in Embodied
Conversational Agents and Robots

27 Aniel Bhulai (VU), Dynamic website optimization through autonomous
management of design patterns

28 Rianne Kaptein (UVA), Effective Focused Retrieval by Exploiting Query
Context and Document Structure

29 Faisal Kamiran (TUE), Discrimination-aware Classification
30 Egon van den Broek (UT), Affective Signal Processing (ASP): Unraveling

the mystery of emotions
31 Ludo Waltman (EUR), Computational and Game-Theoretic Approaches

for Modeling Bounded Rationality
32 Nees-Jan van Eck (EUR), Methodological Advances in Bibliometric Map-

ping of Science
33 Tom van der Weide (UU), Arguing to Motivate Decisions

Titles in SIKS 187

34 Paolo Turrini (UU), Strategic Reasoning in Interdependence: Logical and
Game-theoretical Investigations

35 Maaike Harbers (UU), Explaining Agent Behavior in Virtual Training
36 Erik van der Spek (UU), Experiments in serious game design: a cognitive

approach
37 Adriana Burlutiu (RUN), Machine Learning for Pairwise Data, Applica-

tions for Preference Learning and Supervised Network Inference
38 Nyree Lemmens (UM), Bee-inspired Distributed Optimization
39 Joost Westra (UU), Organizing Adaptation using Agents in Serious Games
40 Viktor Clerc (VU), Architectural Knowledge Management in Global Soft-

ware Development
41 Luan Ibraimi (UT), Cryptographically Enforced Distributed Data Access

Control
42 Michal Sindlar (UU), Explaining Behavior through Mental State Attribu-

tion
43 Henk van der Schuur (UU), Process Improvement through Software Op-

eration Knowledge
44 Boris Reuderink (UT), Robust Brain-Computer Interfaces
45 Herman Stehouwer (UvT), Statistical Language Models for Alternative

Sequence Selection
46 Beibei Hu (TUD), Towards Contextualized Information Delivery: A Rule-

based Architecture for the Domain of Mobile Police Work
47 Azizi Bin Ab Aziz (VU), Exploring Computational Models for Intelligent

Support of Persons with Depression
48 Mark Ter Maat (UT), Response Selection and Turn-taking for a Sensitive

Artificial Listening Agent
49 Andreea Niculescu (UT), Conversational interfaces for task-oriented

spoken dialogues: design aspects influencing interaction quality

2012 01 Terry Kakeeto (UvT), Relationship Marketing for SMEs in Uganda
02 Muhammad Umair (VU), Adaptivity, emotion, and Rationality in Human

and Ambient Agent Models
03 Adam Vanya (VU), Supporting Architecture Evolution by Mining Soft-

ware Repositories
04 Jurriaan Souer (UU), Development of Content Management System-

based Web Applications
05 Marijn Plomp (UU), Maturing Interorganisational Information Systems
06 Wolfgang Reinhardt (OU), Awareness Support for Knowledge Workers in

Research Networks

188 Titles in SIKS

07 Rianne van Lambalgen (VU), When the Going Gets Tough: Exploring
Agent-based Models of Human Performance under Demanding Condi-
tions

08 Gerben de Vries (UVA), Kernel Methods for Vessel Trajectories
09 Ricardo Neisse (UT), Trust and Privacy Management Support for

Context-Aware Service Platforms
10 David Smits (TUE), Towards a Generic Distributed Adaptive Hypermedia

Environment
11 J.C.B. Rantham Prabhakara (TUE), Process Mining in the Large: Prepro-

cessing, Discovery, and Diagnostics
12 Kees van der Sluijs (TUE), Model Driven Design and Data Integration in

Semantic Web Information Systems
13 Suleman Shahid (UvT), Fun and Face: Exploring non-verbal expressions

of emotion during playful interactions
14 Evgeny Knutov (TUE), Generic Adaptation Framework for Unifying Ad-

aptive Web-based Systems
15 Natalie van der Wal (VU), Social Agents. Agent-Based Modelling of Integ-

rated Internal and Social Dynamics of Cognitive and Affective Processes.
16 Fiemke Both (VU), Helping people by understanding them - Ambient

Agents supporting task execution and depression treatment
17 Amal Elgammal (UvT), Towards a Comprehensive Framework for Busi-

ness Process Compliance
18 Eltjo Poort (VU), Improving Solution Architecting Practices
19 Helen Schonenberg (TUE), What’s Next? Operational Support for Busi-

ness Process Execution
20 Ali Bahramisharif (RUN), Covert Visual Spatial Attention, a Robust

Paradigm for Brain-Computer Interfacing
21 Roberto Cornacchia (TUD), Querying Sparse Matrices for Information

Retrieval
22 Thijs Vis (UvT), Intelligence, politie en veiligheidsdienst: verenigbare

grootheden?
23 Christian Muehl (UT), Toward Affective Brain-Computer Interfaces: Ex-

ploring the Neurophysiology of Affect during Human Media Interaction
24 Laurens van der Werff (UT), Evaluation of Noisy Transcripts for Spoken

Document Retrieval
25 Silja Eckartz (UT), Managing the Business Case Development in Inter-

Organizational IT Projects: A Methodology and its Application
26 Emile de Maat (UVA), Making Sense of Legal Text

Titles in SIKS 189

27 Hayrettin Gurkok (UT), Mind the Sheep! User Experience Evaluation &
Brain-Computer Interface Games

28 Nancy Pascall (UvT), Engendering Technology Empowering Women
29 Almer Tigelaar (UT), Peer-to-Peer Information Retrieval
30 Alina Pommeranz (TUD), Designing Human-Centered Systems for Re-

flective Decision Making
31 Emily Bagarukayo (RUN), A Learning by Construction Approach for

Higher Order Cognitive Skills Improvement, Building Capacity and In-
frastructure

32 Wietske Visser (TUD), Qualitative multi-criteria preference representa-
tion and reasoning

33 Rory Sie (OUN), Coalitions in Cooperation Networks (COCOON)
34 Pavol Jancura (RUN), Evolutionary analysis in PPI networks and applic-

ations
35 Evert Haasdijk (VU), Never Too Old To Learn – On-line Evolution of Con-

trollers in Swarm- and Modular Robotics
36 Denis Ssebugwawo (RUN), Analysis and Evaluation of Collaborative

Modeling Processes
37 Agnes Nakakawa (RUN), A Collaboration Process for Enterprise Architec-

ture Creation
38 Selmar Smit (VU), Parameter Tuning and Scientific Testing in Evolution-

ary Algorithms
39 Hassan Fatemi (UT), Risk-aware design of value and coordination net-

works
40 Agus Gunawan (UvT), Information Access for SMEs in Indonesia
41 Sebastian Kelle (OU), Game Design Patterns for Learning
42 Dominique Verpoorten (OU), Reflection Amplifiers in self-regulated

Learning
43 Withdrawn
44 Anna Tordai (VU), On Combining Alignment Techniques
45 Benedikt Kratz (UvT), A Model and Language for Business-aware Trans-

actions
46 Simon Carter (UVA), Exploration and Exploitation of Multilingual Data

for Statistical Machine Translation
47 Manos Tsagkias (UVA), Mining Social Media: Tracking Content and Pre-

dicting Behavior
48 Jorn Bakker (TUE), Handling Abrupt Changes in Evolving Time-series

Data

190 Titles in SIKS

49 Michael Kaisers (UM), Learning against Learning - Evolutionary dynam-
ics of reinforcement learning algorithms in strategic interactions

50 Steven van Kervel (TUD), Ontologogy driven Enterprise Information Sys-
tems Engineering

51 Jeroen de Jong (TUD), Heuristics in Dynamic Sceduling; a practical
framework with a case study in elevator dispatching

2013 01 Viorel Milea (EUR), News Analytics for Financial Decision Support
02 Erietta Liarou (CWI), MonetDB/DataCell: Leveraging the Column-store

Database Technology for Efficient and Scalable Stream Processing
03 Szymon Klarman (VU), Reasoning with Contexts in Description Logics
04 Chetan Yadati (TUD), Coordinating autonomous planning and schedul-

ing
05 Dulce Pumareja (UT), Groupware Requirements Evolutions Patterns
06 Romulo Goncalves (CWI), The Data Cyclotron: Juggling Data and Quer-

ies for a Data Warehouse Audience
07 Giel van Lankveld (UvT), Quantifying Individual Player Differences
08 Robbert-Jan Merk (VU), Making enemies: cognitive modeling for oppon-

ent agents in fighter pilot simulators
09 Fabio Gori (RUN), Metagenomic Data Analysis: Computational Methods

and Applications
10 Jeewanie Jayasinghe Arachchige (UvT), A Unified Modeling Framework

for Service Design.
11 Evangelos Pournaras (TUD), Multi-level Reconfigurable Self-organization

in Overlay Services
12 Marian Razavian (VU), Knowledge-driven Migration to Services
13 Mohammad Safiri (UT), Service Tailoring: User-centric creation of integ-

rated IT-based homecare services to support independent living of elderly
14 Jafar Tanha (UVA), Ensemble Approaches to Semi-Supervised Learning

Learning
15 Daniel Hennes (UM), Multiagent Learning - Dynamic Games and Applic-

ations
16 Eric Kok (UU), Exploring the practical benefits of argumentation in multi-

agent deliberation
17 Koen Kok (VU), The PowerMatcher: Smart Coordination for the Smart

Electricity Grid
18 Jeroen Janssens (UvT), Outlier Selection and One-Class Classification
19 Renze Steenhuizen (TUD), Coordinated Multi-Agent Planning and

Scheduling

Titles in SIKS 191

20 Katja Hofmann (UvA), Fast and Reliable Online Learning to Rank for
Information Retrieval

21 Sander Wubben (UvT), Text-to-text generation by monolingual machine
translation

22 Tom Claassen (RUN), Causal Discovery and Logic
23 Patricio de Alencar Silva (UvT), Value Activity Monitoring
24 Haitham Bou Ammar (UM), Automated Transfer in Reinforcement Learn-

ing
25 Agnieszka Anna Latoszek-Berendsen (UM), Intention-based Decision

Support. A new way of representing and implementing clinical guidelines
in a Decision Support System

26 Alireza Zarghami (UT), Architectural Support for Dynamic Homecare
Service Provisioning

27 Mohammad Huq (UT), Inference-based Framework Managing Data
Provenance

28 Frans van der Sluis (UT), When Complexity becomes Interesting: An In-
quiry into the Information eXperience

29 Iwan de Kok (UT), Listening Heads
30 Joyce Nakatumba (TUE), Resource-Aware Business Process Manage-

ment: Analysis and Support
31 Dinh Khoa Nguyen (UvT), Blueprint Model and Language for Engineer-

ing Cloud Applications
32 Kamakshi Rajagopal (OUN), Networking For Learning; The role of Net-

working in a Lifelong Learner’s Professional Development
33 Qi Gao (TUD), User Modeling and Personalization in the Microblogging

Sphere
34 Kien Tjin-Kam-Jet (UT), Distributed Deep Web Search
35 Abdallah El Ali (UvA), Minimal Mobile Human Computer Interaction
36 Than Lam Hoang (TUe), Pattern Mining in Data Streams
37 Dirk Börner (OUN), Ambient Learning Displays
38 Eelco den Heijer (VU), Autonomous Evolutionary Art
39 Joop de Jong (TUD), A Method for Enterprise Ontology based Design of

Enterprise Information Systems
40 Pim Nijssen (UM), Monte-Carlo Tree Search for Multi-Player Games
41 Jochem Liem (UVA), Supporting the Conceptual Modelling of Dynamic

Systems: A Knowledge Engineering Perspective on Qualitative Reasoning
42 Léon Planken (TUD), Algorithms for Simple Temporal Reasoning

192 Titles in SIKS

43 Marc Bron (UVA), Exploration and Contextualization through Interaction
and Concepts

2014 01 Nicola Barile (UU), Studies in Learning Monotone Models from Data
02 Fiona Tuliyano (RUN), Combining System Dynamics with a Domain Mod-

eling Method
03 Sergio Raul Duarte Torres (UT), Information Retrieval for Children:

Search Behavior and Solutions
04 Hanna Jochmann-Mannak (UT), Websites for children: search strategies

and interface design - Three studies on children’s search performance
and evaluation

05 Jurriaan van Reijsen (UU), Knowledge Perspectives on Advancing Dy-
namic Capability

06 Damian Tamburri (VU), Supporting Networked Software Development
07 Arya Adriansyah (TUE), Aligning Observed and Modeled Behavior
08 Samur Araujo (TUD), Data Integration over Distributed and Heterogen-

eous Data Endpoints
09 Philip Jackson (UvT), Toward Human-Level Artificial Intelligence: Rep-

resentation and Computation of Meaning in Natural Language
10 Ivan Salvador Razo Zapata (VU), Service Value Networks
11 Janneke van der Zwaan (TUD), An Empathic Virtual Buddy for Social

Support
12 Willem van Willigen (VU), Look Ma, No Hands: Aspects of Autonomous

Vehicle Control
13 Arlette van Wissen (VU), Agent-Based Support for Behavior Change:

Models and Applications in Health and Safety Domains
14 Yangyang Shi (TUD), Language Models With Meta-information
15 Natalya Mogles (VU), Agent-Based Analysis and Support of Human Func-

tioning in Complex Socio-Technical Systems: Applications in Safety and
Healthcare

16 Krystyna Milian (VU), Supporting trial recruitment and design by auto-
matically interpreting eligibility criteria

17 Kathrin Dentler (VU), Computing healthcare quality indicators automat-
ically: Secondary Use of Patient Data and Semantic Interoperability

18 Mattijs Ghijsen (UVA), Methods and Models for the Design and Study of
Dynamic Agent Organizations

19 Vinicius Ramos (TUE), Adaptive Hypermedia Courses: Qualitative and
Quantitative Evaluation and Tool Support

20 Mena Habib (UT), Named Entity Extraction and Disambiguation for In-
formal Text: The Missing Link

Titles in SIKS 193

21 Kassidy Clark (TUD), Negotiation and Monitoring in Open Environments
22 Marieke Peeters (UU), Personalized Educational Games - Developing

agent-supported scenario-based training
23 Eleftherios Sidirourgos (UvA/CWI), Space Efficient Indexes for the Big

Data Era
24 Davide Ceolin (VU), Trusting Semi-structured Web Data
25 Martijn Lappenschaar (RUN), New network models for the analysis of

disease interaction
26 Tim Baarslag (TUD), What to Bid and When to Stop
27 Rui Jorge Almeida (EUR), Conditional Density Models Integrating Fuzzy

and Probabilistic Representations of Uncertainty
28 Anna Chmielowiec (VU), Decentralized k-Clique Matching
29 Jaap Kabbedijk (UU), Variability in Multi-Tenant Enterprise Software
30 Peter de Cock (UvT), Anticipating Criminal Behaviour
31 Leo van Moergestel (UU), Agent Technology in Agile Multiparallel Man-

ufacturing and Product Support
32 Naser Ayat (UvA), On Entity Resolution in Probabilistic Data
33 Tesfa Tegegne (RUN), Service Discovery in eHealth
34 Christina Manteli (VU), The Effect of Governance in Global Software De-

velopment: Analyzing Transactive Memory Systems.
35 Joost van Ooijen (UU), Cognitive Agents in Virtual Worlds: A Middleware

Design Approach
36 Joos Buijs (TUE), Flexible Evolutionary Algorithms for Mining Structured

Process Models
37 Maral Dadvar (UT), Experts and Machines United Against Cyberbullying
38 Danny Plass-Oude Bos (UT), Making brain-computer interfaces better:

improving usability through post-processing.
39 Jasmina Maric (UvT), Web Communities, Immigration, and Social Cap-

ital
40 Walter Omona (RUN), A Framework for Knowledge Management Using

ICT in Higher Education
41 Frederic Hogenboom (EUR), Automated Detection of Financial Events in

News Text
42 Carsten Eijckhof (CWI/TUD), Contextual Multidimensional Relevance

Models
43 Kevin Vlaanderen (UU), Supporting Process Improvement using Method

Increments
44 Paulien Meesters (UvT), Intelligent Blauw. Met als ondertitel:

Intelligence-gestuurde politiezorg in gebiedsgebonden eenheden.

194 Titles in SIKS

45 Birgit Schmitz (OUN), Mobile Games for Learning: A Pattern-Based Ap-
proach

46 Ke Tao (TUD), Social Web Data Analytics: Relevance, Redundancy, Di-
versity

47 Shangsong Liang (UVA), Fusion and Diversification in Information Re-
trieval

2015 01 Niels Netten (UvA), Machine Learning for Relevance of Information in
Crisis Response

02 Faiza Bukhsh (UvT), Smart auditing: Innovative Compliance Checking in
Customs Controls

03 Twan van Laarhoven (RUN), Machine learning for network data
04 Howard Spoelstra (OUN), Collaborations in Open Learning Environ-

ments
05 Christoph Bösch (UT), Cryptographically Enforced Search Pattern Hiding
06 Farideh Heidari (TUD), Business Process Quality Computation - Comput-

ing Non-Functional Requirements to Improve Business Processes
07 Maria-Hendrike Peetz (UvA), Time-Aware Online Reputation Analysis
08 Jie Jiang (TUD), Organizational Compliance: An agent-based model for

designing and evaluating organizational interactions
09 Randy Klaassen (UT), HCI Perspectives on Behavior Change Support Sys-

tems
10 Henry Hermans (OUN), OpenU: design of an integrated system to sup-

port lifelong learning
11 Yongming Luo (TUE), Designing algorithms for big graph datasets: A

study of computing bisimulation and joins
12 Julie M. Birkholz (VU), Modi Operandi of Social Network Dynamics: The

Effect of Context on Scientific Collaboration Networks
13 Giuseppe Procaccianti (VU), Energy-Efficient Software
14 Bart van Straalen (UT), A cognitive approach to modeling bad news con-

versations
15 Klaas Andries de Graaf (VU), Ontology-based Software Architecture Doc-

umentation
16 Changyun Wei (UT), Cognitive Coordination for Cooperative Multi-Robot

Teamwork
17 André van Cleeff (UT), Physical and Digital Security Mechanisms: Prop-

erties, Combinations and Trade-offs
18 Holger Pirk (CWI), Waste Not, Want Not! - Managing Relational Data in

Asymmetric Memories
19 Bernardo Tabuenca (OUN), Ubiquitous Technology for Lifelong Learners

Titles in SIKS 195

20 Lois Vanhée (UU), Using Culture and Values to Support Flexible Coordin-
ation

21 Sibren Fetter (OUN), Using Peer-Support to Expand and Stabilize Online
Learning

22 Zhemin Zhu (UT), Co-occurrence Rate Networks
23 Luit Gazendam (VU), Cataloguer Support in Cultural Heritage
24 Richard Berendsen (UVA), Finding People, Papers, and Posts: Vertical

Search Algorithms and Evaluation
25 Steven Woudenberg (UU), Bayesian Tools for Early Disease Detection
26 Alexander Hogenboom (EUR), Sentiment Analysis of Text Guided by Se-

mantics and Structure
27 Sándor Héman (CWI), Updating compressed colomn stores
28 Janet Bagorogoza (TiU), Knowledge Management and High Perform-

ance; The Uganda Financial Institutions Model for HPO
29 Hendrik Baier (UM), Monte-Carlo Tree Search Enhancements for One-

Player and Two-Player Domains
30 Kiavash Bahreini (OU), Real-time Multimodal Emotion Recognition in E-

Learning
31 Yakup Koç (TUD), On the robustness of Power Grids
32 Jerome Gard (UL), Corporate Venture Management in SMEs
33 Frederik Schadd (TUD), Ontology Mapping with Auxiliary Resources
34 Victor de Graaf (UT), Gesocial Recommender Systems
35 Jungxao Xu (TUD), Affective Body Language of Humanoid Robots: Per-

ception and Effects in Human Robot Interaction

2016 01 Syed Saiden Abbas (RUN), Recognition of Shapes by Humans and Ma-
chines

02 Michiel Christiaan Meulendijk (UU), Optimizing medication reviews
through decision support: prescribing a better pill to swallow

03 Maya Sappelli (RUN), Knowledge Work in Context: User Centered Know-
ledge Worker Support

04 Laurens Rietveld (VU), Publishing and Consuming Linked Data
05 Evgeny Sherkhonov (UVA), Expanded Acyclic Queries: Containment and

an Application in Explaining Missing Answers
06 Michel Wilson (TUD), Robust scheduling in an uncertain environment
07 Jeroen de Man (VU), Measuring and modeling negative emotions for

virtual training
08 Matje van de Camp (TiU), A Link to the Past: Constructing Historical

Social Networks from Unstructured Data

196 Titles in SIKS

09 Archana Nottamkandath (VU), Trusting Crowdsourced Information on
Cultural Artefacts

10 George Karafotias (VUA), Parameter Control for Evolutionary Algorithms
11 Anne Schuth (UVA), Search Engines that Learn from Their Users
12 Max Knobbout (UU), Logics for Modelling and Verifying Normative

Multi-Agent Systems
13 Nana Baah Gyan (VU), The Web, Speech Technologies and Rural Devel-

opment in West Africa - An ICT4D Approach
14 Ravi Khadka (UU), Revisiting Legacy Software System Modernization
15 Steffen Michels (RUN), Hybrid Probabilistic Logics - Theoretical Aspects,

Algorithms and Experiments
16 Guangliang Li (UVA), Socially Intelligent Autonomous Agents that Learn

from Human Reward
17 Berend Weel (VU), Towards Embodied Evolution of Robot Organisms
18 Albert Meroño Peñuela (VU), Refining Statistical Data on the Web
19 Julia Efremova (Tu/e), Mining Social Structures from Genealogical Data
20 Daan Odijk (UVA), Context & Semantics in News & Web Search
21 Alejandro Moreno Célleri (UT), From Traditional to Interactive

Playspaces: Automatic Analysis of Player Behavior in the Interactive Tag
Playground

22 Grace Lewis (VU), Software Architecture Strategies for Cyber-Foraging
Systems

23 Fei Cai (UVA), Query Auto Completion in Information Retrieval
24 Brend Wanders (UT), Repurposing and Probabilistic Integration of Data;

An Iterative and data model independent approach
25 Julia Kiseleva (TU/e), Using Contextual Information to Understand

Searching and Browsing Behavior
26 Dilhan Thilakarathne (VU), In or Out of Control: Exploring Computa-

tional Models to Study the Role of Human Awareness and Control in
Behavioural Choices, with Applications in Aviation and Energy Manage-
ment Domains

27 Wen Li (TUD), Understanding Geo-spatial Information on Social Media
28 Mingxin Zhang (TUD), Large-scale Agent-based Social Simulation - A

study on epidemic prediction and control
29 Nicolas Höning (TUD), Peak reduction in decentralised electricity sys-

tems - Markets and prices for flexible planning
30 Ruud Mattheij (UvT), The Eyes Have It
31 Mohammad Khelghati (UT), Deep web content monitoring

Titles in SIKS 197

32 Eelco Vriezekolk (UT), Assessing Telecommunication Service Availability
Risks for Crisis Organisations

33 Peter Bloem (UVA), Single Sample Statistics, exercises in learning from
just one example

34 Dennis Schunselaar (TUE), Configurable Process Trees: Elicitation, Ana-
lysis, and Enactment

35 Zhaochun Ren (UVA), Monitoring Social Media: Summarization, Classi-
fication and Recommendation

36 Daphne Karreman (UT), Beyond R2D2: The design of nonverbal interac-
tion behavior optimized for robot-specific morphologies

37 Giovanni Sileno (UvA), Aligning Law and Action - a conceptual and com-
putational inquiry

38 Andrea Minuto (UT), Materials that Matter - Smart Materials meet Art &
Interaction Design

39 Merijn Bruijnes (UT), Believable Suspect Agents; Response and Interper-
sonal Style Selection for an Artificial Suspect

40 Christian Detweiler (TUD), Accounting for Values in Design
41 Thomas King (TUD), Governing Governance: A Formal Framework for

Analysing Institutional Design and Enactment Governance
42 Spyros Martzoukos (UVA), Combinatorial and Compositional Aspects of

Bilingual Aligned Corpora
43 Saskia Koldijk (RUN), Context-Aware Support for Stress Self-

Management: From Theory to Practice
44 Thibault Sellam (UVA), Automatic Assistants for Database Exploration
45 Bram van de Laar (UT), Experiencing Brain-Computer Interface Control
46 Jorge Gallego Perez (UT), Robots to Make you Happy
47 Christina Weber (UL), Real-time foresight - Preparedness for dynamic

innovation networks
48 Tanja Buttler (TUD), Collecting Lessons Learned
49 Gleb Polevoy (TUD), Participation and Interaction in Projects. A Game-

Theoretic Analysis
50 Yan Wang (UVT), The Bridge of Dreams: Towards a Method for Opera-

tional Performance Alignment in IT-enabled Service Supply Chains

2017 01 Jan-Jaap Oerlemans (UL), Investigating Cybercrime
02 Sjoerd Timmer (UU), Designing and Understanding Forensic Bayesian

Networks using Argumentation
03 Daniël Harold Telgen (UU), Grid Manufacturing; A Cyber-Physical Ap-

proach with Autonomous Products and Reconfigurable Manufacturing
Machines

198 Titles in SIKS

04 Mrunal Gawade (CWI), Multi-core Parallelism in a Column-store
05 Mahdieh Shadi (UVA), Collaboration Behavior
06 Damir Vandic (EUR), Intelligent Information Systems for Web Product

Search
07 Roel Bertens (UU), Insight in Information: from Abstract to Anomaly
08 Rob Konijn (VU) , Detecting Interesting Differences:Data Mining in

Health Insurance Data using Outlier Detection and Subgroup Discovery
09 Dong Nguyen (UT), Text as Social and Cultural Data: A Computational

Perspective on Variation in Text
10 Robby van Delden (UT), (Steering) Interactive Play Behavior
11 Florian Kunneman (RUN), Modelling patterns of time and emotion in

Twitter #anticipointment
12 Sander Leemans (TUE), Robust Process Mining with Guarantees
13 Gijs Huisman (UT), Social Touch Technology - Extending the reach of

social touch through haptic technology
14 Shoshannah Tekofsky (UvT), You Are Who You Play You Are: Modelling

Player Traits from Video Game Behavior
15 Peter Berck (RUN), Memory-Based Text Correction
16 Aleksandr Chuklin (UVA), Understanding and Modeling Users of Modern

Search Engines
17 Daniel Dimov (UL), Crowdsourced Online Dispute Resolution
18 Ridho Reinanda (UVA), Entity Associations for Search
19 Jeroen Vuurens (UT), Proximity of Terms, Texts and Semantic Vectors in

Information Retrieval
20 Mohammadbashir Sedighi (TUD), Fostering Engagement in Knowledge

Sharing: The Role of Perceived Benefits, Costs and Visibility
21 Jeroen Linssen (UT), Meta Matters in Interactive Storytelling and Serious

Gaming (A Play on Worlds)
22 Sara Magliacane (VU), Logics for causal inference under uncertainty
23 David Graus (UVA), Entities of Interest — Discovery in Digital Traces
24 Chang Wang (TUD), Use of Affordances for Efficient Robot Learning
25 Veruska Zamborlini (VU), Knowledge Representation for Clinical

Guidelines, with applications to Multimorbidity Analysis and Literature
Search

26 Merel Jung (UT), Socially intelligent robots that understand and respond
to human touch

27 Michiel Joosse (UT), Investigating Positioning and Gaze Behaviors of So-
cial Robots: People’s Preferences, Perceptions and Behaviors

28 John Klein (VU), Architecture Practices for Complex Contexts

Titles in SIKS 199

29 Adel Alhuraibi (UvT), From IT-BusinessStrategic Alignment to Perform-
ance: A Moderated Mediation Model of Social Innovation, and Enterprise
Governance of IT”

30 Wilma Latuny (UvT), The Power of Facial Expressions
31 Ben Ruijl (UL), Advances in computational methods for QFT calculations
32 Thaer Samar (RUN), Access to and Retrievability of Content in Web

Archives
33 Brigit van Loggem (OU), Towards a Design Rationale for Software Docu-

mentation: A Model of Computer-Mediated Activity
34 Maren Scheffel (OU), The Evaluation Framework for Learning Analytics
35 Martine de Vos (VU), Interpreting natural science spreadsheets
36 Yuanhao Guo (UL), Shape Analysis for Phenotype Characterisation from

High-throughput Imaging
37 Alejandro Montes Garcia (TUE), WiBAF: A Within Browser Adaptation

Framework that Enables Control over Privacy
38 Alex Kayal (TUD), Normative Social Applications
39 Sara Ahmadi (RUN), Exploiting properties of the human auditory system

and compressive sensing methods to increase noise robustness in ASR
40 Altaf Hussain Abro (VUA), Steer your Mind: Computational Exploration

of Human Control in Relation to Emotions, Desires and Social Support
For applications in human-aware support systems

41 Adnan Manzoor (VUA), Minding a Healthy Lifestyle: An Exploration of
Mental Processes and a Smart Environment to Provide Support for a
Healthy Lifestyle

42 Elena Sokolova (RUN), Causal discovery from mixed and missing data
with applications on ADHD datasets

43 Maaike de Boer (RUN), Semantic Mapping in Video Retrieval
44 Garm Lucassen (UU), Understanding User Stories - Computational Lin-

guistics in Agile Requirements Engineering
45 Bas Testerink (UU), Decentralized Runtime Norm Enforcement
46 Jan Schneider (OU), Sensor-based Learning Support
47 Jie Yang (TUD), Crowd Knowledge Creation Acceleration
48 Angel Suarez (OU), Collaborative inquiry-based learning

2018 01 Han van der Aa (VUA), Comparing and Aligning Process Representations
02 Felix Mannhardt (TUE), Multi-perspective Process Mining
03 Steven Bosems (UT), Causal Models For Well-Being: Knowledge Model-

ing, Model-Driven Development of Context-Aware Applications, and Be-
havior Prediction

200 Titles in SIKS

04 Jordan Janeiro (TUD), Flexible Coordination Support for Diagnosis
Teams in Data-Centric Engineering Tasks

05 Hugo Huurdeman (UVA), Supporting the Complex Dynamics of the In-
formation Seeking Process

06 Dan Ionita (UT), Model-Driven Information Security Risk Assessment of
Socio-Technical Systems

07 Jieting Luo (UU), A formal account of opportunism in multi-agent sys-
tems

08 Rick Smetsers (RUN), Advances in Model Learning for Software Systems
09 Xu Xie (TUD), Data Assimilation in Discrete Event Simulations
10 Julienka Mollee (VUA), Moving forward: supporting physical activity be-

havior change through intelligent technology
11 Mahdi Sargolzaei (UVA), Enabling Framework for Service-oriented Col-

laborative Networks
12 Xixi Lu (TUE), Using behavioral context in process mining
13 Seyed Amin Tabatabaei (VUA), Computing a Sustainable Future
14 Bart Joosten (UVT), Detecting Social Signals with Spatiotemporal Gabor

Filters
15 Naser Davarzani (UM), Biomarker discovery in heart failure
16 Jaebok Kim (UT), Automatic recognition of engagement and emotion in

a group of children
17 Jianpeng Zhang (TUE), On Graph Sample Clustering
18 Henriette Nakad (UL), De Notaris en Private Rechtspraak
19 Minh Duc Pham (VUA), Emergent relational schemas for RDF
20 Manxia Liu (RUN), Time and Bayesian Networks
21 Aad Slootmaker (OUN), EMERGO: a generic platform for authoring and

playing scenario-based serious games
22 Eric Fernandes de Mello Araujo (VUA), Contagious: Modeling the Spread

of Behaviours, Perceptions and Emotions in Social Networks
23 Kim Schouten (EUR), Semantics-driven Aspect-Based Sentiment Analysis
24 Jered Vroon (UT), Responsive Social Positioning Behaviour for Semi-

Autonomous Telepresence Robots
25 Riste Gligorov (VUA), Serious Games in Audio-Visual Collections
26 Roelof Anne Jelle de Vries (UT),Theory-Based and Tailor-Made: Motiva-

tional Messages for Behavior Change Technology
27 Maikel Leemans (TUE), Hierarchical Process Mining for Scalable Soft-

ware Analysis
28 Christian Willemse (UT), Social Touch Technologies: How they feel and

how they make you feel

Titles in SIKS 201

29 Yu Gu (UVT), Emotion Recognition from Mandarin Speech
30 Wouter Beek, The ”K” in ”semantic web” stands for ”knowledge”: scaling

semantics to the web

2019 01 Rob van Eijk (UL),Web privacy measurement in real-time bidding sys-
tems. A graph-based approach to RTB system classification

02 Emmanuelle Beauxis Aussalet (CWI, UU), Statistics and Visualizations
for Assessing Class Size Uncertainty

03 Eduardo Gonzalez Lopez de Murillas (TUE), Process Mining on Data-
bases: Extracting Event Data from Real Life Data Sources

04 Ridho Rahmadi (RUN), Finding stable causal structures from clinical data
05 Sebastiaan van Zelst (TUE), Process Mining with Streaming Data
06 Chris Dijkshoorn (VU), Nichesourcing for Improving Access to Linked

Cultural Heritage Datasets
07 Soude Fazeli (TUD), Recommender Systems in Social Learning Platforms
08 Frits de Nijs (TUD), Resource-constrained Multi-agent Markov Decision

Processes
09 Fahimeh Alizadeh Moghaddam (UVA), Self-adaptation for energy effi-

ciency in software systems
10 Qing Chuan Ye (EUR), Multi-objective Optimization Methods for Alloca-

tion and Prediction
11 Yue Zhao (TUD), Learning Analytics Technology to Understand Learner

Behavioral Engagement in MOOCs
12 Jacqueline Heinerman (VU), Better Together
13 Guanliang Chen (TUD), MOOC Analytics: Learner Modeling and Content

Generation
14 Daniel Davis (TUD), Large-Scale Learning Analytics: Modeling Learner

Behavior & Improving Learning Outcomes in Massive Open Online
Courses

15 Erwin Walraven (TUD), Planning under Uncertainty in Constrained and
Partially Observable Environments

16 Guangming Li (TUE), Process Mining based on Object-Centric Behavioral
Constraint (OCBC) Models

17 Ali Hurriyetoglu (RUN),Extracting actionable information from micro-
texts

18 Gerard Wagenaar (UU), Artefacts in Agile Team Communication
19 Vincent Koeman (TUD), Tools for Developing Cognitive Agents
20 Chide Groenouwe (UU), Fostering technically augmented human collect-

ive intelligence

202 Titles in SIKS

21 Cong Liu (TUE), Software Data Analytics: Architectural Model Discovery
and Design Pattern Detection

22 Martin van den Berg (VU),Improving IT Decisions with Enterprise Archi-
tecture

23 Qin Liu (TUD), Intelligent Control Systems: Learning, Interpreting, Veri-
fication

24 Anca Dumitrache (VU), Truth in Disagreement - Crowdsourcing Labeled
Data for Natural Language Processing

25 Emiel van Miltenburg (VU), Pragmatic factors in (automatic) image de-
scription

26 Prince Singh (UT), An Integration Platform for Synchromodal Transport
27 Alessandra Antonaci (OUN), The Gamification Design Process applied to

(Massive) Open Online Courses
28 Esther Kuindersma (UL), Cleared for take-off: Game-based learning to

prepare airline pilots for critical situations
29 Daniel Formolo (VU), Using virtual agents for simulation and training of

social skills in safety-critical circumstances
30 Vahid Yazdanpanah (UT), Multiagent Industrial Symbiosis Systems
31 Milan Jelisavcic (VU), Alive and Kicking: Baby Steps in Robotics
32 Chiara Sironi (UM), Monte-Carlo Tree Search for Artificial General Intel-

ligence in Games
33 Anil Yaman (TUE), Evolution of Biologically Inspired Learning in Artifi-

cial Neural Networks
34 Negar Ahmadi (TUE), EEG Microstate and Functional Brain Network Fea-

tures for Classification of Epilepsy and PNES
35 Lisa Facey-Shaw (OUN), Gamification with digital badges in learning pro-

gramming
36 Kevin Ackermans (OUN), Designing Video-Enhanced Rubrics to Master

Complex Skills
37 Jian Fang (TUD), Database Acceleration on FPGAs
38 Akos Kadar (OUN), Learning visually grounded and multilingual repres-

entations

2020 01 Armon Toubman (UL), Calculated Moves: Generating Air Combat Beha-
viour

02 Marcos de Paula Bueno (UL), Unraveling Temporal Processes using Prob-
abilistic Graphical Models

03 Mostafa Deghani (UvA), Learning with Imperfect Supervision for Lan-
guage Understanding

04 Maarten van Gompel (RUN), Context as Linguistic Bridges

Titles in SIKS 203

05 Yulong Pei (TUE), On local and global structure mining
06 Preethu Rose Anish (UT), Stimulation Architectural Thinking during Re-

quirements Elicitation - An Approach and Tool Support
07 Wim van der Vegt (OUN), Towards a software architecture for reusable

game components
08 Ali Mirsoleimani (UL),Structured Parallel Programming for Monte Carlo

Tree Search
09 Myriam Traub (UU), Measuring Tool Bias and Improving Data Quality for

Digital Humanities Research
10 Alifah Syamsiyah (TUE), In-database Preprocessing for Process Mining
11 Sepideh Mesbah (TUD), Semantic-Enhanced Training Data Augmenta-

tionMethods for Long-Tail Entity Recognition Models
12 Ward van Breda (VU), Predictive Modeling in E-Mental Health: Exploring

Applicability in Personalised Depression Treatment
13 Marco Virgolin (CWI), Design and Application of Gene-pool Optimal Mix-

ing Evolutionary Algorithms for Genetic Programming
14 Mark Raasveldt (CWI/UL), Integrating Analytics with Relational Data-

bases
15 Konstantinos Georgiadis (OUN), Smart CAT: Machine Learning for Con-

figurable Assessments in Serious Games
16 Ilona Wilmont (RUN), Cognitive Aspects of Conceptual Modelling
17 Daniele Di Mitri (OUN), The Multimodal Tutor: Adaptive Feedback from

Multimodal Experiences
18 Georgios Methenitis (TUD), Agent Interactions & Mechanisms in Markets

with Uncertainties: Electricity Markets in Renewable Energy Systems
19 Guido van Capelleveen (UT), Industrial Symbiosis Recommender Sys-

tems
20 Albert Hankel (VU), Embedding Green ICT Maturity in Organisations
21 Karine da Silva Miras de Araujo (VU), Where is the robot?: Life as it could

be
22 Maryam Masoud Khamis (RUN), Understanding complex systems imple-

mentation through a modeling approach: the case of e-government in
Zanzibar

23 Rianne Conijn (UT), The Keys to Writing: A writing analytics approach
to studying writing processes using keystroke logging

24 Lenin da Nobrega Medeiros (VUA/RUN), How are you feeling, human?
Towards emotionally supportive chatbots

25 Xin Du (TUE), The Uncertainty in Exceptional Model Mining

204 Titles in SIKS

26 Krzysztof Leszek Sadowski (UU), GAMBIT: Genetic Algorithm for Model-
Based mixed-Integer opTimization

27 Ekaterina Muravyeva (TUD), Personal data and informed consent in an
educational context

28 Bibeg Limbu (TUD), Multimodal interaction for deliberate practice:
Training complex skills with augmented reality

29 Ioan Gabriel Bucur (RUN), Being Bayesian about Causal Inference
30 Bob Zadok Blok (UL), Creatief, Creatieve, Creatiefst
31 Gongjin Lan (VU), Learning better – From Baby to Better
32 Jason Rhuggenaath (TUE), Revenue management in online markets: pri-

cing and online advertising
33 Rick Gilsing (TUE), Supporting service-dominant business model evalu-

ation in the context of business model innovation
34 Anna Bon (MU), Intervention or Collaboration? Redesigning Information

and Communication Technologies for Development
35 Siamak Farshidi (UU), Multi-Criteria Decision-Making in Software Pro-

duction

2021 01 Francisco Xavier Dos Santos Fonseca (TUD),Location-based Games for
Social Interaction in Public Space

02 Rijk Mercuur (TUD), Simulating Human Routines:Integrating Social
Practice Theory in Agent-Based Models

03 Seyyed Hadi Hashemi (UVA), Modeling Users Interacting with Smart
Devices

04 Ioana Jivet (OU), The Dashboard That Loved Me: Designing adaptive
learning analytics for self-regulated learning

05 Davide Dell’Anna (UU), Data-Driven Supervision of Autonomous Systems
06 Daniel Davison (UT), ”Hey robot, what do you think?” How children

learn with a social robot
07 Armel Lefebvre (UU), Research data management for open science
08 Nardie Fanchamps (OU), The Influence of Sense-Reason-Act Program-

ming on Computational Thinking
09 Cristina Zaga (UT), The Design of Robothings. Non-Anthropomorphic

and Non-Verbal Robots to Promote Children’s Collaboration Through Play
10 Quinten Meertens (UvA), Misclassification Bias in Statistical Learning
11 Anne van Rossum (UL), Nonparametric Bayesian Methods in Robotic Vis-

ion
12 Lei Pi (UL), External Knowledge Absorption in Chinese SMEs
13 Bob R. Schadenberg (UT), Robots for Autistic Children: Understanding

and Facilitating Predictability for Engagement in Learning

Titles in SIKS 205

14 Negin Samaeemofrad (UL), Business Incubators: The Impact of Their
Support

15 Onat Ege Adali (TU/e), Transformation of Value Propositions into Re-
source Re-Configurations through the Business Services Paradigm

16 Esam A. H. Ghaleb (UM), BIMODAL EMOTION RECOGNITION FROM
AUDIO-VISUAL CUES

17 Dario Dotti (UM), Human Behavior Understanding from motion and bod-
ily cues using deep neural networks

18 Remi Wieten (UU), Bridging the Gap Between Informal Sense-Making
Tools and Formal Systems - Facilitating the Construction of Bayesian Net-
works and Argumentation Frameworks

19 Roberto Verdecchia (VU), Architectural Technical Debt: Identification
and Management

20 Masoud Mansoury (TU/e), Understanding and Mitigating Multi-Sided
Exposure Bias in Recommender Systems

21 Pedro Thiago Timbó Holanda (CWI), Progressive Indexes

Curriculum Vitae

Hugo Manuel Proença was born on January 21st, 1990, in Hong Kong. Then, he lived
his first two years in Macau, after which he went to Lisbon, Portugal. Hugo conducted
the first two years of high school (2004-2006) at Liceu Maria Amália Vaz de Carvalho
in Lisbon, after which he finalized the last year at Escola Secundária Campos Melo,
Covilhã. After that, he returned to Lisbon to join Instituto Superior Técnico, Univer-
sidade de Lisboa. There, he obtained a Bachelor degree in Physics Engineering in
2011, and a Master degree in Mechanical Engineering, specializing in Systems Engin-
eering, in 2015. His Mater thesis, titled “Optimizing Probabilistic Fuzzy Systems For
Classification” was supervised by João Sousa, and with the support of Susana Vieira,
Rui Almeida, and Uzay Kaymak. During the time of his Master thesis, Hugo conducted
an internship as a Mechanical Engineer at Mettler Toledo in Changzhou, China.
Soon after his graduation, he performed a data science internship at the Cybernetics
Department of the Czech Technical University in Prague. Then, he returned to Lisbon,
where he worked with Susana Vieira, and Cátia Salgado, on two chapters of the MIT
critical data book “Secondary Analysis of Electronic Health Records”.
In June 2016 he started his PhD in Computer Science at Leiden University as a part of
the SAPPAO project and joined both the Natural Computing and the Explanatory Data
Analysis group, under the supervision of Thomas Bäck and Matthijs van Leeuwen. The
project was a Dutch-Indian collaboration which involved a close collaboration with
Dhish Saxena, Sarang Kapoor, and Divyam Aggarwal, at IIT Roorkee, and Rajesh Alla,
and Arioli Arumugam, at GE Global Research in Bangalore. Here, he specialized on
developing interpretable and statistically robust machine learning and data mining
methods. From October 2020, for a period of six months, he was a researcher at
Huawei Ireland Research Center.

	Contents
	List of symbols
	List of acronyms
	Introduction
	Predictive rule lists
	Subgroup lists
	Research question and contributions
	Outline of this dissertation
	Publications

	Preliminaries
	Introduction to rules
	Supervised data
	Association rules, predictive rules and subgroups
	Interpretation as probabilistic rule
	Maximum likelihood estimation

	Rule lists, predictive rule lists, and subgroup lists
	Classification performance measures
	Subgroup discovery measures
	Top-k quality measures
	Weighted Kullback-Leibler divergence

	Subgroup set discovery measures

	MDL for rule lists
	The Minimum Description Length (MDL) principle
	Model encoding
	Data encoding
	Two types of data encoding

	Data encoding: nominal target variables
	Encoding categorical distributions with known parameters
	Encoding categorical distributions with unknown parameters
	Relationship of MDL-optimal subgroup lists to WKL-based SD
	Relationship of MDL-optimal subgroup lists to Bayesian testing

	Data encoding: numeric target variables
	Encoding normal distributions with known parameters
	Encoding normal distributions with unknown parameters
	Relationship of MDL-optimal subgroup lists to WKL-based SD
	Relationship of MDL-optimal subgroup lists to Bayesian testing

	A new measure for subgroup sets: the sum of WKL divergences
	Theoretical difference between subgroup list and predictive rule list

	Discovering predictive rule lists with Classy
	Related work
	Rule-based classifiers
	Pattern mining
	MDL-based data mining

	The Classy algorithm
	Separate-and-conquer greedy search
	Compression gain
	Candidate generation
	Finding good rule lists
	Time and space complexity

	Empirical evaluation
	Compression versus classification
	Candidate set influence
	Classification performance
	Interpretability
	Statistical significance testing
	Overfitting
	Runtime
	Discussion

	Conclusions

	Discovering subgroup lists with RSD
	Related work
	Subgroup discovery
	Pattern mining
	MDL in pattern mining
	Algorithmic comparison in the literature

	The RSD Algorithm
	Algorithm high-level description
	Compression gain
	Statistical testing interpretation of compression gain
	Beam search for subgroup generation
	The Robust Subgroup Discoverer algorithm
	Time and space complexity

	Empirical evaluation
	Influence of RSD hyperparameters
	Setup of the subgroup quality performance comparisons
	Nominal target results
	Numeric target results
	Runtime comparison

	Case Study: Hotel Bookings
	Case study: flight delay analysis
	Analysis of subgroups obtained with RSD

	Case study: socioeconomic background and university performance
	Analysis of subgroups obtained with RSD

	Conclusions

	Conclusions
	Summary
	Discussion
	Future Work
	Short and medium-term research
	Long-term research

	Appendices
	Appendix Kullback-Leibler divergence between two normal distributions
	Appendix Prequential plug-in encoding for rule lists with categorical distributions
	Appendix Normalized Maximum Likelihood for rule lists with categorical distributions
	Appendix Bayesian encoding of a normal distribution with mean and standard deviation unknown
	Appendix Bayesian encoding convergence to BIC for large n
	Appendix Datasets used for classification experiments
	Appendix RSD supplementary empirical evaluation
	Datasets used for subgroup discovery experiments
	Analysis of RSD compression gain hyperparameter
	Analysis of RSD beam search hyperparameters
	Results of non-sequential subgroup set discovery algorithms

	Bibliography
	Samenvatting
	Summary
	Resumo
	List of publications
	Acknowledgements
	Titles in the SIKS dissertation series since 2011
	Curriculum Vitae

