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Abstract We introduce the problem of robust subgroup discovery, i.e., finding
a set of interpretable descriptions of subsets that 1) stand out with respect to
one or more target attributes, 2) are statistically robust, and 3) non-redundant.
Many attempts have been made to mine either locally robust subgroups or to
tackle the pattern explosion, but we are the first to address both challenges
at the same time from a global modelling perspective. First, we formulate the
broad model class of subgroup lists, i.e., ordered sets of subgroups, for univari-
ate and multivariate targets that can consist of nominal or numeric variables,
including traditional top-1 subgroup discovery in its definition. This novel
model class allows us to formalise the problem of optimal robust subgroup
discovery using the Minimum Description Length (MDL) principle, where we
resort to optimal Normalised Maximum Likelihood and Bayesian encodings for
nominal and numeric targets, respectively. Second, finding optimal subgroup
lists is NP-hard. Therefore, we propose SSD++, a greedy heuristic that finds
good subgroup lists and guarantees that the most significant subgroup found
according to the MDL criterion is added in each iteration. In fact, the greedy
gain is shown to be equivalent to a Bayesian one-sample proportion, multino-
mial, or t-test between the subgroup and dataset marginal target distributions
plus a multiple hypothesis testing penalty. Furthermore, we empirically show
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LIACS, Niels Bohrweg 1, 2333 CA Leiden, Netherlands
E-mail: t.h.w.baeck@liacs.leidenuniv.nl

Matthijs van Leeuwen
LIACS, Niels Bohrweg 1, 2333 CA Leiden, Netherlands
E-mail: m.van.leeuwen@liacs.leidenuniv.nl

ar
X

iv
:2

10
3.

13
68

6v
4 

 [
cs

.L
G

] 
 3

0 
Ju

n 
20

22

https://orcid.org/0000-0001-7315-5925
https://orcid.org/0000-0001-9832-9936
https://orcid.org/0000-0001-6768-1478
https://orcid.org/0000-0002-0510-3549


2 Hugo M. Proença et al.

on 54 datasets that SSD++ outperforms previous subgroup discovery methods
in terms of quality, generalisation on unseen data, and subgroup list size.

Keywords subgroup discovery · subgroup list · the Minimum Description
Length (MDL) principle · interpretability

1 Introduction

Exploratory Data Analysis (EDA) (Tukey, 1977) aims at enhancing its prac-
titioner’s natural ability to recognise patterns in the data being studied. The
more she explores, the more she discovers, but also the higher the risk of
finding interesting results arising out of coincidences, e.g., spurious relations
between variables that have no connection in the real world. Intuitively this
corresponds to testing multiple hypotheses without realising it. This duality of
EDA requires a thorough analysis of results and highlights the need for statis-
tically robust techniques that allow us to explore the data in a responsible way.
While EDA encompasses all techniques referring to data exploration, Subgroup
Discovery (SD) (Klösgen, 1996; Atzmueller, 2015) is the subfield that is con-
cerned with discovering interpretable descriptions of subsets of the data that
stand out with respect to a given target variable, i.e., subgroups. This work
aims at improving the discovery of subgroup lists, i.e., ordered sets of subsets,
that describe different regions of the data while being statistically robust by
themselves and against multiple hypothesis testing. Two simple examples of
subgroup lists can be found in Figures 1 and 2.

Pr(animaltype = · · · | s) in %

s description ns Mammal Fish Invert. Bug Reptile Amph. Bird

1 backbone = no 18 0 0 56 44 0 0 0

2 breathes = no 14 0 93 0 0 7 0 0

3 feathers = yes 20 0 0 0 0 0 0 100

4 milk = no 8 0 0 0 0 50 50 0

5 feathers = no 41 100 0 0 0 0 0 0

dataset distribution 0∗ 41 13 10 8 5 4 2

Fig. 1 Zoo dataset subgroup list obtained by SSD++. Zoo contains one nom-
inal target variable with 7 classes, 101 instances, and 15 binary and 1 numeric
variables. ns refers to the number of instances covered by subgroup ‘s’ defined
by ‘description’. Pr(animaltype = ∗ | s) denotes the estimated probability (in
%) of each class label occurring within the subgroup. The bottom row shows
the marginal probability distribution of the dataset. ∗ concerns instances not
covered by any of the five subgroups. For illustrative purposes, the probabili-
ties displayed correspond to the empirical probabilities in the data, not to the
probabilities as would be obtained using the appropriate estimator
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price (K)

s description of automobile specifications ns µ̂ σ̂

1 weight = heavy & consumption-city ≤ 8 km/L 11 35 8

2 fuel-type = gas & consumption-city ≥ 13 km/L 45 7 1

3 weight = light & wheel-base = low 35 9 1

4 length = medium & 13 ≤ consumption-city ≤ 15 km/L 27 10 2

5 peak-rpm = medium 49 16 3

6 engine-size = medium 12 26 7

dataset overall distribution 18∗ 13 8

Fig. 2 Automobile import 1985 subgroup list obtained with SSD++. The
dataset contains price as numeric target variable, 197 examples, and 17 vari-
ables. The dataset was modified, some variables removed and others discre-
tised, for ease of presentation. ns refers to the number of instances covered by
subgroup ‘s’ defined by ‘description’, µ̂ and σ̂ its estimated mean and stan-
dard deviation for the target variable in thousands of dollars (K). ∗ concerns
instances not covered by any of the five subgroups

Subgroup discovery (SD) can be seen as a generalisation of association rule
mining or as the exploratory counterpart of rule learning, where the tar-
gets/consequent of the rules are fixed and rules are ranked according to qual-
ity measures combining subgroup size and deviation of the target variable(s)
with respect to the overall distribution in the data. In its traditional form,
subgroup discovery is also referred to as top-k subgroup mining (Atzmueller,
2015), which entails mining the k top-ranking subgroups according to a local
quality measure and a number k selected by the user. Since its conception,
subgroup discovery has been developed for various types of data and targets,
e.g., nominal, numeric (Großkreutz and Rüping, 2009), and multi-label (van
Leeuwen, 2010) targets. SD has been applied in a wide range of different do-
mains (Herrera et al., 2011; Atzmueller, 2015), such as identifying the prop-
erties of materials (Goldsmith et al., 2017), unusual consumption patterns in
smart grids (Jin et al., 2014), identifying the characteristics of delayed flights
(Proença et al., 2018), and understanding the influence of pace in long-distance
running (De Leeuw et al., 2018).
Although SD appeals to several domains, top-k mining traditionally suffers
from three main issues that make it impractical for many applications: 1) poor
computational efficiency of exhaustive search with the more relevant quality
measures (van Leeuwen and Knobbe, 2012; Bosc et al., 2018); 2) redundancy
of mined subgroups, i.e., the fact that subsets with the highest deviation ac-
cording to a certain local quality measure tend to cover the same region of the
dataset with slight variations in their description of the subset (van Leeuwen
and Knobbe, 2012); and 3) lack of generalisation or statistical robustness of
mined subgroups (van Leeuwen and Ukkonen, 2016).
In this work, we focus on the last two issues together: reducing redundancy by
finding small lists of subgroups that describe the differences in the data well;
and obtaining statistically robust subgroups. First, we define the problem of
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robust subgroup discovery in its full generality using the minimum description
length (MDL) principle. Second, as optimally solving the problem is unfeasible,
we focus solely on subgroup lists (not sets) and propose a greedy algorithm
that finds good subgroup lists using a local objective for binary, nominal,
or numeric target variables. Moreover, we show that this MDL-based greedy
gain is equivalent to maximising the Bayes factor between each subgroup’s
distribution and the dataset marginal distribution plus a penalty for multiple
hypothesis testing. Since subgroup lists with only one subgroup are equivalent
to top-1 mining, all statistical properties developed here can be directly applied
to top-k subgroup discovery. For a formal definition of the Robust Subgroup
Discovery problem and our approximation, please refer to Section 4.
Note that we restrict our focus to finding subgroup lists with the MDL principle
because 1) subgroup lists are one of the core subgroup set models and one of
the first that was proposed (Lavrač et al., 2004); 2) they allow for an optimal
formulation based on the MDL principle due to their property of unambigu-
ously partitioning the data into non-overlapping parts; 3) the subgroups can
be interpreted sequentially, i.e., from most to least relevant discovered sub-
group; and 4) the MDL principle is a statistical criterion for model selection
that requires the fewest assumptions possible about the model class, data, and
(data) generation process.

In recent years both redundancy and statistical robustness issues have been
partially addressed, mostly independent of each other. We next briefly discuss
recent advances and limitations and refer the reader to Section 11 for an in-
depth analysis of related work.
In terms of redundancy, the first main limitation of existing works is their
focus on one type of target variables, such as binary targets (Bosc et al., 2018;
Belfodil et al., 2019), nominal targets (Lavrač et al., 2004), or numeric targets
(Lijffijt et al., 2018), where only DSSD focuses on univariate and multivariate
nominal and numeric targets (van Leeuwen and Knobbe, 2012). The second
main limitation is the lack of an optimality criterion for subgroup sets or lists,
where the only exception is FSSD (Belfodil et al., 2019). It is important to
emphasise that some works aim at finding sequential subgroups or subgroup
lists, while others aim at finding unordered sets or subgroup sets. Subgroup
lists are akin to rule lists (Proença and van Leeuwen, 2020) in the sense that
each subgroup/rule needs to be interpreted sequentially, and thus they should
be read and interpreted sequentially and cannot overlap, while subgroup sets
are allowed to overlap. In this work, we focus solely on subgroup lists, and
although previous works often did not use this term, we retroactively rename
those models that are, in fact, subgroup lists.
In terms of statistical robustness, the approaches can be divided into post-
processing techniques (Duivesteijn and Knobbe, 2011; van Leeuwen and Ukko-
nen, 2016) and modified quality measures (Song et al., 2016; Song, 2017). Post-
processing techniques first mine the top-k subgroups and then apply a statis-
tical test to find statistical significance. Modified quality measure approaches,
which are more closely related to our work, add a statistical test directly to the
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quality measure definition; however, they do not consider multiple-hypothesis
testing correction and only focus on top-k mining.

Next, we show how our contributions address both issues in a unified way.

Contributions. We aim to bridge the gap in the literature by finding the best
non-redundant subgroup list from a global dataset perspective while guarantee-
ing the local quality of the found subgroups, making the approach statistically
robust from both perspectives. Two examples of subgroup lists for nominal
and numeric targets can be seen in Figures 1 and 2. To solve this problem,
we propose a formal definition of a subgroup list and employ the Minimum
Description Length (MDL) principle (Rissanen, 1978) to define an optimal
subgroup list from a global perspective. We provide this formalisation for uni-
variate and multivariate nominal and numeric targets. Notably, the subgroup
that minimises the MDL-optimal formulation for a subgroup list with one sub-
group is the same subgroup that would be found by top-1 subgroup discovery
with Weighted Kullback-Leibler divergence (WKL) as a quality measure. This
makes our proposal the first global formulation of subgroup set discovery that
is a direct generalisation of traditional subgroup discovery. Thus, all statistical
properties developed in this work also apply to top-k subgroup discovery.

As finding optimal subgroup lists is NP-Hard, we propose SSD++, a heuristic
algorithm that finds “good” subgroup lists. SSD++ combines beam search—
to find individual subgroups—with greedy search—to iteratively add the best-
found subgroup to the subgroup list. Maximising the MDL criterion in each
iteration guarantees that each subgroup added to the list adheres to a local
statistical test equivalent to Bayesian proportions, multinomial, or t-test (for
binary, nominal and numeric targets, respectively) plus a penalty to compen-
sate for multiple hypothesis testing.

Previous work. This work is an extension of Proença et al. (2020) and builds on
some of the results of Proença and van Leeuwen (2020). The former introduces
MDL-based subgroup lists for univariate numeric target variables and SSD++,
a heuristic algorithm for finding such subgroup lists. The current manuscript
significantly extends our previous work by generalising the MDL data encoding
to three new target variable types: multivariate numeric targets, and univariate
and multivariate nominal targets. To find and prove its efficacy, the algorithm
and empirical results are also extended to those new target variables. Moreover,
the current work provides a new interpretation of the MDL encoding and of
the greedy gain as an MDL equivalent to Bayesian testing.

Proença and van Leeuwen (2020) introduced MDL-based rule lists for clas-
sification; however, compared to the current work, it is limited to Boolean
explanatory and nominal target variables, its model and data encoding are
less optimal, it has no local statistical guarantees, and the algorithm was less
flexible in accepting user-defined hyperparameters.
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Summary of contributions. To summarise, the primary contributions presented
in this work—including the contributions originally from Proença et al. (2020),
which we indicate with a * below—are:

1. Subgroup list model class – We define the subgroup list model class*
over a tabular dataset in general (Section 4.1), providing a global formula-
tion for the problem of sequential subgroup mining, and in particular for
univariate and multivariate nominal targets (Section 6.1), and univariate
numeric* and multivariate numeric targets (Section 6.2).

2. Robust subgroup discovery using MDL – We define the optimal prob-
lem of robust subgroup discovery in Section 4.2 for the case of subgroup
lists using the MDL principle. We show the relation of model encoding
and multiple-hypothesis testing (Section 5), and resort to the optimal Nor-
malised Maximum Likelihood (NML) encoding for nominal targets (Sec-
tion 6.1) and the Bayesian encoding with non-informative priors for nu-
meric targets* (Section 6.2). Notably, we show that this problem formali-
sation is equivalent to the standard definition of top-1 subgroup discovery
with WKL as a quality measure for the case of a subgroup list with one
subgroup (Section 7.1).

3. Greedy MDL algorithms maximise local statistical test – We show
that the greedy gain commonly used in the MDL for pattern mining litera-
ture can be interpreted as an MDL equivalent to a local Bayesian hypothesis
test, a.k.a. Bayes factor, on the likelihood of the data being better fitted by
the greedy extended model versus the current model plus a penalty for the
extra model complexity (Section 7.2). In the case of our specific algorithm,
SSD++, the greedy objective is equivalent to one-sample Bayes propor-
tions, multinomial, and t-test (for binary, nominal and numeric* targets,
respectively) plus a penalty to compensate for multiple hypothesis testing
(Section 7.2).

Moreover, this work includes the following secondary contributions, the details
of which are all included in the appendices for the interested reader:

4. Normalised Maximum Likelihood for partition models – Derivation
of the Normalised Maximum Likelihood (NML) optimal encoding, a refined
MDL encoding, for model classes that partition the data for nominal target
variables—subgroup lists, rule lists, trees, etc. (Appendix A).

5. Bayesian encoding of normal distributions – Derivation of a Bayesian
optimal encoding of normal distributions with non-informative priors for
numeric targets* (Appendix B). It is shown that for a large number of
instances, it converges to the BIC* (Appendix B.1). Similarly to the NML
encoding, it can be used by any model class that unambiguously partitions
the data, such as subgroup lists, rule lists, trees, etc.

6. Subgroups discovery versus rule-based prediction – We demonstrate
the difference between the formal objectives for subgroup discovery and
predictive rule models, such as classification rule lists, from the perspective
of our MDL-based approach (Appendix D).



Robust subgroup discovery 7

Structure of the paper. Besides the customary introduction, related work,
and conclusion, this work contains two preliminary sections—Sections 2 and 3—
a problem statement section—Section 4—three theoretical sections related
with MDL encoding—Sections 5 to 7—one algorithm section—Section 8—and
two empirical results sections—Sections 9 and 10. The preliminary sections
introduce the notation and basic concepts, while the problem statement for-
malises the objective of this work. Together, these three sections—where a
reader familiar with the topic at hand can skim through—allow reading each
of the following sections independently of each other.
The specific details of each section can be described as follows. Section 2 intro-
duces the notation used throughout this work and the preliminaries related to
subgroup discovery and subgroup set discovery. After that, Section 3 presents
the preliminaries related to model selection in the frequentist, Bayesian, and
the Minimum Description Length (MDL) principle branches of statistics. Then,
Section 4 defines the subgroup list model class, the robust subgroup discov-
ery problem statement, and a novel quality measure for subgroup lists based
on the Weighted Kullback-Leibler (WKL) divergence. After that, Section 5
shows the MDL principle model encoding part of the subgroup list and its
relation to multiple hypothesis testing. Section 6 presents the data encoding
for nominal and numeric targets. Then, Section 7 demonstrates how our MDL-
based formulation of subgroup lists equals WKL-based subgroup discovery and
Bayesian testing. After that, Section 8 presents SSD++, a heuristic algorithm
to mine subgroup lists, as well as its time complexity. Then, in Section 9 we
show the empirical results of our proposed method when compared against
the state-of-the-art algorithms for univariate and multivariate nominal and
numeric targets over 54 datasets. After that, in Section 10 we apply robust
subgroup discovery to find how descriptions of the socioeconomic background
affect the grades of engineering students in Colombia. Then, Section 11 cov-
ers the most relevant related work, together with the main differences to our
approach. Finally, Section 12 presents our main conclusions and future work.

2 Preliminaries: notation and subgroup discovery

In this section, the mathematical notation used throughout this work is intro-
duced together with all the topics of Subgroup Discovery (SD), Subgroup Set
Discovery (SSD), and beam search and separate and conquer algorithms for
subgroup discovery.

This section is divided as follows. First, Section 2.1 defines the notation used
for data, target variables, and subgroups. Then, in Section 2.2, we present
the task of subgroup discovery and how to rank the discovered subgroups
according to a quality measure. A particular emphasis is given to the Kullback-
Leibler divergence as it plays a fundamental role in our definition of MDL-
based subgroup lists. After that, Section 2.3 defines the task of subgroup set
discovery. Finally, Section 2.4 briefly describes beam search and separate and
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conquer, algorithms that we use to generate the top-k subgroups and add
subgroups to the subgroup list.

2.1 Data and subgroups

Consider a dataset D = (X,Y) = {(x1,y1), (x2,y2), ..., (xn,yn)} of n i.i.d.
instances. Each instance (x,y) is composed of a vector of explanatory variable
values x and a vector of target variable values y. Each observed explanatory
vector has m values x = [x1, ..., xm], one for each variable X1, ..., Xm. The
domain of a variable Xj , denoted Xj , can be one of two types: nominal or
numeric. Similarly, each observed target vector is composed of t values y =
[y1, ..., yt], one for each target variable Y1, ..., Yt, with associated domains Yj .
The target variables can be of two types: numeric, or nominal. In the numeric
case, the domain is Yj = R and in the nominal it is Yj = {1, ·, k}, with Yj
the set of classes/categories of variable Yj . For the complete notation used
throughout this work please refer to Table 1.
Note that we use subscripts on the dataset variables (D,X,Y, X, Y, x, y) to
indicate column indices and superscripts for row indices. In the case of other
notation, such as the number of elements n or statistics µ, σ we will not use
the superscript as it could be confused with the exponentiation of that value.
Also, Xi (resp. Yi) refers to both the properties of the ith explanatory (resp.
target) variable and to all the values of this variable for a specific column.

Depending on the type and number of targets (one or multiple), the type
of problem can be divided into four categories: 1) single-nominal ; 2) single-
numeric; 3) multi-nominal ; and 4) multi-numeric. In machine learning, the
single-numeric case corresponds to regression, the single-nominal to classifica-
tion, and in the case of more than one variable their multi-target generalisa-
tions, respectively.

2.1.1 Subgroups

A subgroup, denoted by s, consists of a description (also intent) that defines
a cover (also extent), i.e., a subset of dataset D.

Subgroup description: A description a is a Boolean function over all explana-
tory variables X. Formally, it is a function a : X1 × · · · ×Xm 7→ {false, true}.
In our case, a description a is a conjunction of conditions on X, each specifying
a specific value or interval on a variable. The domain of possible conditions de-
pends on the type of a variable: numeric variables support greater and less than
{≥,≤}; nominal support equal to {=}. The size of a description a, denoted
|a|, is the number of conditioned variables it contains.

Example 1: In Figure 2, subgroup 1 has a description of size |a| = 2, with one
condition on a nominal variable: {weigth = heavy}; and another on a numeric
variable: {consumption-city ≤ 8km/L}.
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Table 1 Notation table.

Symbol Definition

D = {X,Y} Labelled dataset.
X Dataset of explanatory variables of D.
X An explanatory variable of X.
X Domain of X.
x A explanatory variables sample of X.
x The value of sample x for variable X.
Y Dataset of target variables of D.
Y An target variable of Y.
Y Domain of Y .
y A target variables sample of Y.
y The value of sample y for variable Y .
| · | Number of elements in a set, as e.g., |D| for number of samples.
i Index for subsetting by row.
j Index for subsetting by column.
v A generic explanatory variable.
k Number of classes of a nominal target variable.
n Number of examples in dataset D.
m Number of explanatory variables.
t Number of target variables.
d Subscript associated with dataset distribution or default rule.
M Subgroup list model (including subgroups S and default rule).
S Subgroups in model M.
ω Number of subgroups in M .
s A subgroup.
Ω The set of all subgroups
a Description of a subgroup.
ai Description of the ith subgroup in model M.
Da = {Xa,Ya} Samples of dataset D covered by description a.
na Number of samples in Da. na = |Da|.
Di = {Xi,Yi} Samples of dataset D covered by the ith subgroup in model M.
ni Number of samples in Di. ni = |Di|.
Dist(Θ) Generic probability distribution with parameters Θ.
N (µ;σ) Normal probability distribution with parameters µ and σ.
Cat(p1, · · · , pk) Categorical probability distribution with pi probability per category.
py|c Probability of category y given description a, i.e., Pr(y | a)
µ Mean value parameter.
σ Standard deviation parameter.

θ̂ Maximum likelihood estimation of parameter θ.
q(a) Subgroup discovery quality measure.
Q(S) Subgroup set discovery quality measure.
f(Θ̂a, Θ̂d) Function of differences between distribution Θ̂a and Θ̂d.
α Tradeoff between subgroup coverage and distribution difference.
KL Kullback-Leibler divergence general form.
KLCat Kullback-Leibler divergence for categorical distributions.
KLµ Kullback-Leibler divergence for location distributions.
KLµ,σ Kullback-Leibler divergence for normal distributions.
WKL Weighted Kullback-Leibler divergence general form.
SWKL Sum of Weighted Kullback-Leibler divergences.
LN Universal code of integers.
LNML(Y ij ) Normalised Maximum Likelihood length of encoding of data Y ij .
C(na, k) Multinomial distribution complexity with na points and k categories.
LBayes Bayesian length of encoding with improper priors.
Y i|2 The two points that make the Bayesian encoding proper.
LBayes2.0 Bayesian length of encoding made proper with first 2 points.
Γ (n) Gamma function, the extension of the factorial to real numbers.
∆βL(D,M ⊕ s) Compression gain of adding subgroup s to model M .

Ξ(Θ̂i, Θ̂d) Parametric statistical test between Θ̂i and Θ̂d.
β Level of normalisation of the compression gain.
ζ Set of all items (possible single conditions) in X.
dmax Beam search maximum depth of search.
wb Beam search beam width.
ncut Number of cut points for numeric discretisation.
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Subgroup cover: The cover is the bag of instances from D where the subgroup
description holds true. Formally, it is defined by:

Da = {(x,y) ∈ D | a v x} = {Xa
1 , · · · , Xa

m, Y
a
1 , · · · , Y at } = {Xa,Ya}, (1)

where we use a v x to denote a(x) = true. Further, let na = |Da| denote the
coverage of the subgroup, i.e., the number of instances it covers.

Example 2 (continuation): In Figure 2, subgroup 1 covers 11 instances in
the dataset which can be found by conditions in its description, and thus its
coverage is 11.

2.1.2 Subgroups as probabilistic rules

As Da encompasses both the explanatory and target variables, the effect of a
on the target variables can be interpreted as a probabilistic rule. Regarding the
multiple target variables, we assume that they are independent. This simplifies
the problem and is a common approach in multi-label classification (Herrera
et al., 2016). Thus, the general form of the rule is:

a 7→ y1 ∼ Dist(Θ̂a1), · · · , yt ∼ Dist(Θ̂at ), (2)

where yj is a value of variable Yj , Dist is a probability distribution (defined

later) and Θ̂aj is the shorthand for the maximum likelihood estimation of the

parameters of Dist over values Y aj , i.e., Θ̂aj = Θ̂j(Y
a). Thus, yi ∼ Dist(Θ̂aj )

tells us that the values of variable Yj are distributed according to a distri-

bution Dist with parameters Θ̂aj estimated over the values Y aj . The vector
of all parameter values of a rule is denoted by Θa. In our case, Dist can be
a categorical or normal distribution in the nominal or numeric target case,
respectively.
In the numeric case the normal distribution is represented as: N (µ̂, σ̂). In
the nominal case the distribution is Cat(p̂1, · · · , p̂k), where k is the number
of classes (or categories) of the corresponding variable and p̂c the estimated
probability for class c.

Example 3 (continuation): Revisiting the Automobile import subgroup list in
Figure 2, the description and corresponding statistics for the second subgroup
are a = {fuel-type = gas & consumption-city ≥ 13 km/L } and Θ̂a2 = {µ̂ =
7; σ̂ = 1}, respectively, where the units are thousands of dollars (K). This
corresponds to the following normal probability distribution:

price (K) ∼ N (µ̂ = 7; σ̂ = 1)
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Example 4 (continuation): In the case of the Zoo subgroup list in Figure 1, the
description for the first subgroup is a = {backbone = no}, and its correspond-
ing statistics are Θ̂a1 = {p̂1 = 0; p̂2 = 0; p̂3 = 0.56; p̂4 = 0.44; p̂5 = 0; p̂6 =
0; p̂7 = 0}, where the class labels 1, ..., 7 correspond to the animal types in
the order of Figure 1. The target variable follows the following categorical
distribution:

animal type ∼ Cat(p̂1, p̂2, p̂5, p̂6, p̂7 = 0.00; p̂3 = 0.56; p̂4 = 0.44)

2.2 Subgroup discovery

Subgroup discovery is the data mining task of finding subgroups that stand
out with respect to some given target variable(s). The definition of standing
out, also known as interestingness, is quantified by a quality measure, which
depends on the task at hand (Webb, 1995; Klösgen, 1996). Generally, these
measures quantify quality by how different the target variable distribution of
a subgroup is from what is defined as ‘normal’ behaviour in a dataset. In the
case of structured data, a subgroup generally takes the form of an association
rule, and the ‘normal’ behaviour is usually measured by the average behaviour
of the target variable of that dataset (Atzmueller, 2015).

Quality measures. Thus, depending on the target variable and task, different
quality measures can be chosen to assess the quality (or interestingness) of a
subgroup description a, over is cover Da. In general, quality measures have
two components: 1) representativeness of the subgroup in the data, based on
coverage na = |Da|; and 2) a function of the difference between statistics
of the empirical target distribution of the pattern, Θ̂a = Θ̂(Ya), and the
overall empirical target distribution of the dataset, Θ̂d = Θ̂(Y). The latter
corresponds to the statistics estimated over the whole data, e.g., in the case
of the Automobile import subgroup list of Figure 2 it is Θ̂d = {µ̂ = 13; σ̂ = 8}
and it is estimated over (all) 197 instances of the dataset.
The general form of a quality measure to be maximised is

q(a) = (na)αf(Θ̂a, Θ̂d), α ∈ [0, 1], (3)

where α allows to control the trade-off between coverage and the difference of
the distributions, and f(Θ̂a, Θ̂d) is a function that measures how different the
subgroup and dataset distributions are. As an example, the most commonly
adopted quality measure for single-numeric targets is Weighted Relative Ac-
curacy (WRAcc) (Lavrač et al., 1999), with α = 1 and f(Θ̂a, Θ̂d) = µ̂a − µ̂d
(the difference between subgroup and dataset averages).

2.2.1 Weighted Kullback-Leibler divergence

Another commonly adopted measure is the Weighted-Kullback Leibler diver-
gence (WKL) (van Leeuwen and Knobbe, 2011). This is also the measure
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that we consider throughout this work because of 1) its flexibility in terms
of (number and types of) supported target variables; and 2) its relationship
to the MDL principle (see Sections 7.1); and 3) it arises from using the Log-
loss for assessing the goodness of fit of the dataset and subgroup distribution,
which is a proper scoring rule (Song et al., 2016).

WKL is defined as the Kullback-Leibler (KL) divergence (Kullback and Leibler,
1951) between a subgroup’s and dataset target distribution KL(Θ̂a; Θ̂d) lin-
early weighted by its coverage. Revisiting Eq. (3) this corresponds to f(.) =
KL(.) and α = 1. The definition of WKL for a univariate target variable Y is
given by:

WKL(Θ̂a; Θ̂d) = naKL(Θ̂a; Θ̂d), (4)

where KL(Θ̂a; Θ̂d) is the Kullback-Leibler divergence between subgroup and
dataset for target Y . The KL divergence in Eq. (4) depends on the probabilistic
model chosen to describe the target variables. In its general form, the KL
divergence can be defined as:

KL(Θ̂aj ; Θ̂dj ) =
∑
y∈Y a

Pr(y | Θ̂aj ) log

Pr(y | Θ̂aj )

Pr(y | Θ̂dj )

 , (5)

where the logarithm is to the base two (like all logs in this work). Thus the
choice of the distribution used to describe the target is of great importance and
should reflect what the analyse would like to find in the data. Now, depend-
ing on the type of target we will see show how to compute WKL(Θ̂a; Θ̂d).
It is easy to see that for multivariate targets, we either use a multivariate
distribution, e.g., a multivariate normal distribution or assume that they are
independent target variables, where the total WKL turns out to be just the
sum of the WKL for each target variable.

We will now provide the definitions of WKL for univariate categorical and
normal distributions.

2.2.2 Weighted Kullback-Leibler for categorical distributions

In the case of a univariate nominal target Y , the distribution can be uniquely
described by a categorical distribution with the probability of each category
Θ̂a = {p̂1|a, ..., p̂k|a}, so that the KL(Θ̂a; Θ̂d) of Eq. (4) takes the form of:

KLCat(Θ̂
a; Θ̂d) =

∑
c∈Y

p̂c|a log

(
p̂c|a

p̂c

)
, (6)

where p̂c|a = Pr(c | a) is the maximum likelihood estimate of the conditional
probability of the target c given the subgroup a, and p̂c is the marginal prob-
ability for that category.
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2.2.3 Weighted Kullback-Leibler for normal distributions

In the case of a univariate numeric target Y , many distributions could be
used for modelling. We resort to the normal distribution for its robustness and
analytical properties, as mentioned before. Nonetheless, still two possibilities
remain: a location distribution Θ̂a = {µa} that only accounts for the mean,
or a ‘complete’ normal distribution Θ̂a = {µa, σa} that accounts for the mean
and the variance. With the location distribution KL(Θ̂a; Θ̂d) equals:

KLµ(s) =
(µ̂d − µ̂a)2

σ̂d
, (7)

while with the normal distribution one obtains:

KLµ,σ(s) =

[
log

σ̂d
σ̂a

+
σ̂2
a + (µ̂a − µ̂d)2

2σ̂2
d

log e− log e

2

]
. (8)

Note that since σ̂d is a constant for each dataset, there is a strong resem-
blance between WKLµ(s) and WRAcc, where the only difference is the square
of the difference of the means. Also, notice that WKLµ,σ directly takes pe-
nalises subgroups with large variance—a dispersion-aware quality measure—
while WKLµ(s) (and also WRAcc) fail to give importance to the dispersion
of subgroup values.

2.3 Subgroup set discovery

Subgroup set discovery (SSD) (van Leeuwen and Knobbe, 2012) is the task of
finding a set of high-quality, non-redundant subgroups that together describe
all substantial deviations in the target distribution. It can be seen as an in-
stantiation of the LeGo (from Local Patterns to Global Models) framework,
which describes the steps to pass from local descriptions of the data to a global
model (Knobbe et al., 2008). LeGo identifies three phases of this process for
SSD: 1) mining local candidate subgroups; 2) finding a compact set of the
subgroups from the candidates found in 1; and 3) combining the interesting
subgroups identified in 2 in one global model. Of course, not all phases need
to happen in this order, and some stages can be combined.

Here, we are interested in phase 3: how to aggregate the subgroups in a global
model.
There are three most common aggregation models for subgroups: 1) top-k sub-
groups, which are just the best k ranking subgroups according to a local quality
measure (sometimes called traditional SD); 2) subgroup list, a sequentially or-
dered set of subgroups; and 3) subgroup set, an unordered set of subgroups.
Top-k is still a local paradigm as it does not consider how those k subgroups
describe different regions of the data. Contrastingly, subgroup lists and sets
are true global models as they consider both the subgroups’ local coverage and
their global coverage as sets.
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Over the years, works for SSD focus got divided between lists (Lavrač et al.,
2004; Belfodil et al., 2019) and sets (Lavrač et al., 2004; van Leeuwen and
Knobbe, 2012; Bosc et al., 2018; Lijffijt et al., 2018). For a detailed compari-
son between all these methods, please refer to Section 11.1.2.

2.3.1 Defining the task of Subgroup Set Discovery

Now, we will formally define the task of SSD from a global dataset perspective.
SSD can be defined as, given a quality function Q for subgroup sets and
the set of all possible subgroup sets S, the task is to find the subgroup set
S∗ = {s1, . . . , sk} given by S∗ = arg maxS∈S Q(S). Note that Q should take
into account the individual quality of subgroups q(a) and the overlap of their
coverages Da and quantify the contribution of each instance only once. As
opposed to top-k mining where only their individual qualities are considered,
i.e., Q(S) =

∑
q(a).

Ideally, a quality measure for subgroup sets Q should: 1) be global, i.e., for a
given dataset it should be possible to compare subgroup set qualities regardless
of subgroup set size or coverage; 2) maximise the individual qualities of the
subgroups; and 3) minimise redundancy of the subgroup set, i.e., the subgroups
covers should overlap as little as possible while ensuring the previous point.
Next, we formulate the subgroup list model class and propose a new global
measure for subgroup lists.

2.4 Beam search and separate and conquer algorithms in subgroup discovery

To find good subgroup lists, we propose the SSD++ algorithm in Section 8.
SSD++ is a heuristic based on the Separate-and-Conquer (SaC) (Fürnkranz,
1999) strategy of iteratively adding the local best subgroup to the list, com-
bined with beam search for candidate subgroup generation at each iteration
level.
For that reason, we now present the beam search algorithm in subgroup dis-
covery and the SaC algorithm usually used in SSD. For an in-depth analysis
of algorithms in SD and SSD check Section 11.1 and 11.1.2, respectively.
Greedy approaches are often employed in SSD in general, and subgroup list
discovery in particular, as the task of finding the optimal unordered or ordered
set of patterns is NP-Hard.

Beam search is arguably the most common heuristic in subgroup discovery
(Lavrač et al., 2004; Meeng and Knobbe, 2011; van Leeuwen and Knobbe,
2012; Meeng and Knobbe, 2021). It is a greedy hill-climbing approach that
starts with candidate subgroups of size one and iteratively refine a subset
of those to subgroups to a larger length by adding one more condition per
iteration. Specifically, beam-search has three main hyperparameters: 1) the
beam-width wb; 2) the maximum search depth dmax; and 3) a quality measure.



Robust subgroup discovery 15

In its standard form, the process starts by finding all the best wb subgroups
of size one, i.e., their description only includes one condition such as x1 < 5
or x2 = category, according to the quality measure. Then, it refines all the
wb size one subgroups by adding one more condition, selecting the wb best
refinements, and discarding the rest according to the quality measure. The
process continues until the maximum number of conditions dmax is achieved,
and the subgroup that maximises the quality measure is returned. There are
variations such as the one used by van Leeuwen and Knobbe (2012) and Meeng
and Knobbe (2021) where the numeric explanatory variables are discretised in
each refinement, also known as dynamic discretisation.

Separate and Conquer. Most algorithms for Subgroup Set Discovery find their
global models—subgroup lists or sets—sequentially by adding one subgroup at
the time (Lavrač et al., 2004; van Leeuwen and Knobbe, 2012; Bosc et al., 2018;
Lijffijt et al., 2018; Belfodil et al., 2019), and mostly vary on how they remove
the data or generate their candidate subgroups. Thus, all SSD approaches
that sequentially add subgroups to a model can be seen as a variation of the
traditional Separate-and-Conquer (SaC) rule learning strategy, defined by: 1)
adding local best rule/subgroup to the model; 2) remove (traditional SaC)
or re-weight (deviation from traditional SaC) the data covered by it; and 3)
repeat process 1 and 2 until there is no data left to cover. Thus, using SaC
for finding subgroup lists is the obvious choice. Depending if they find list or
sets, in step 2 they either remove or re-weight, respectively. For details on each
specific method please refer to Section 11.1.2.

3 Preliminaries: Model selection in frequentist, Bayesian, and
MDL perspective

This section briefly revisits model selection in different branches of statistics:
classic statistics, also known as frequentist; Bayesian statistics; and using the
Minimum Description Length (MDL) principle. For an in-depth comparison
of these methods, please refer to Chapter 7 of Hastie et al. (2009).
The objective of model selection is to find the best point hypothesis, i.e.,
choosing the best model (and its parameters set to specific values) for a dataset
from a class of possible models. In our case, this translates to selecting the best
subgroup list, such as in Figure 1, out of all the possible subgroup lists that can
be constructed for that dataset. Furthermore, the best model should describe
the data well while not overfitting, i.e., it should generalise its findings beyond
the (training) data used to estimate its parameters.
Many methods are reformulations of the principle often called Occam’s Razor,
i.e., select the simplest model that fits the data well. However, depending on
the branch of statistics, the assumptions and notation differ, making it hard
to compare the methods directly; thus, we attempt to present them in a more
unified way. The reason for this is twofold: first, we aim to provide a gentle
introduction to the MDL principle for the unacquainted reader by starting
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from more known branches of statistics; second, our proposed MDL formula-
tion of robust subgroup discovery is related to concepts from other branches,
such as model comparison with Bayesian factors or multiple hypothesis testing.

Note that we do not delve into the related Akaike Information Criterion (AIC)
(Akaike, 1998). Although it is usually advantageous in predictive settings
(Grünwald and Roos, 2019), the AIC has a higher rate of false positives and
a bias towards more complex models than the Bayesion Information Crite-
rion (BIC) (Rouder et al., 2009) and, consequently, our MDL formulation
(as it asymptotically converges to BIC up to a constant; see Appendix B.1).
We want to avoid these properties when mining statistically robust subgroups.

This section is divided as follows. First, in Section 3.1, we present frequen-
tist approaches as they are the most commonly employed. Then, Section 3.2
discusses Bayesian hypothesis testing. After that, Section 3.3 introduces the
basic principles of MDL for model selection. Finally, Section 3.4 looks into the
concept of multiple hypothesis testing from the three different perspectives.

3.1 Frequentist approach to model selection

From a classical statistics perspective, one can use several methods to select
the best model from a set of models. These can be broadly divided into out-
data and in-data methods, corresponding to testing the models on an external
or the same (internal) data source on which they were estimated (trained),
respectively. To the first category belong methods commonly used in machine
learning, such as cross-validation (Hastie et al., 2009). The second category,
which concerns us most, corresponds to structural measures, which have ad-
ditional terms to penalise the complexity of the model, i.e., how general is a
model class constrained to a certain number of parameters and dataset size.
Model complexity is sometimes also interpreted as the effective number of pa-
rameters. For example, imagine two classes of subgroup lists: subgroup lists
with one subgroup; and subgroup lists with up to three subgroups (same num-
ber of conditions and dataset); it is easy to see that the second subgroup list
includes the first class and can potentially divide the data in more ways. Com-
mon examples of model complexity measures are the L1 and L2 norms and
the Vapnik–Chervonenkis (VC) dimension (Vapnik and Chervonenkis, 2015).
We do not directly mention common ‘performance’ measures such as accuracy
or maximum likelihood. In fact, from an in-data testing perspective and for a
nested model class such as subgroup lists, e.g., the class of all subgroup lists
with two subgroups includes the class of all subgroup lists with one subgroup,
these measures will overfit on the data (Grünwald, 2007).

Structural measures. Ideally, the method chosen should give guarantees on the
model performance on unseen data. The risk minimisation principle guarantees
those by using the VC dimension for model complexity. The main idea is to
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select the model that maximises a performance measure, e.g. accuracy, while
having the smallest VC dimension. Informally, the VC dimension of a model
is given by the largest set of data examples it (e.g., the class of subgroup list
with 3 subgroups of one condition) can separate. In practice, computing the
VC dimension can be impractical for certain model classes, and one resorts to
more straightforward model complexities, such as the L1 or L2 norm.
An example of an L1 norm structural measure for finding decision lists was
described by Angelino et al. (2017) as

Q(D,M) = Acc.(Y | X,M) + λ|M |, (9)

where Q(D,M) is the objective function used to select the model, Acc.(Y |
X,M) is the accuracy, λ is an adjustable parameter, and |M | is the number
of rules in the model. For completeness, the method should include an extra
term to penalise the number of conditions in each rule.
Bayesian statistics and the MDL principle can be seen as probabilistic struc-
tural measures with mathematically rigorous foundations, similarly to the
structural risk minimisation, that take into account all model parameters to
quantify model complexity (Grünwald and Roos, 2019). The main difference
between these branches of statistics is that frequentist statistics usually focus
on the probability of the data given the model Pr(D |M). In contrast, Bayes
and MDL focus on Pr(M | D) by making additional assumptions about the
probability of the model before seeing any data Pr(M) (prior)—similar, albeit
different, to the additional assumptions made by the VC dimension.

3.2 Bayes hypothesis testing and Bayes factor

Bayesian hypothesis testing was introduced by Jeffreys (Jeffreys, 1935, 1998),
and focuses on comparing the hypothesis/models based on their probability
of occurrence given the data, i.e., based on the posterior probability of each
model Pr(M | D). To compare both models, one computes the ratio of their
posterior distributions such as (Kass and Raftery, 1995; Rouder et al., 2009):

Ξ =
Pr(M1 | D)

Pr(M2 | D)
=

Pr(D |M1)

Pr(D |M2)
× Pr(M1)

Pr(M2)
= K1,2 ×

Pr(M1)

Pr(M2)
, (10)

where the transition from the second to the third expression is made using the
Bayes rule and removing the terms Pr(D) from the expression, and K1,2 is
the Bayes factor between the models. Indeed, depending on how large or how
small the ratio K1,2 is, we can interpret it—similar to p-values in frequentist
statistics—as more evidence in favour of hypothesis 1 or 2, respectively (Kass
and Raftery, 1995). It is interesting to notice that, in the case of a large
number of instances and a smooth prior, the Bayes factor approximates the
Bayes Information Criterion (BIC) up to a constant (Schwarz, 1978; Raftery,
1995).
As the two hypotheses being tested are over the same data, the ratio Ξ can
be rewritten as Pr(M1, D)/Pr(M2, D) using the chain rule. Also, as we deal
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with a supervised setting, Pr(D |M) becomes Pr(Y | X,M), taking the same
form used in the next section for the MDL principle. When this comparison
is extended to a whole model class M, several methods can be used to select
the best model; however, the one most similar to our MDL approach corre-
sponds to choosing the model with the highest probability. i.e., the mode of
the distribution.

3.3 MDL-based model selection

The Minimum Description Length (MDL) principle originates from the ideas of
information theory. It allows for model selection by comparing code lengths for
different models and selecting the model that compresses the data best(Rissanen,
1978; Grünwald, 2007; Grünwald and Roos, 2019). In our specific case, the goal
is to find the best subgroup list model M from the class of all possible sub-
group list models M, as defined in Section 4.1. As we want to find the best
point-hypothesis, such as in Figure 2, the model selection problem should be
formalised using a two-part code (Grünwald, 2007), i.e.,

M∗ = arg min
M∈M

L(D,M) = arg min
M∈M

[
L(D |M) + L(M)

]
= arg min

M∈M

[
L(Y | X,M) + L(M)

]
,

(11)

where L(Y | X,M) is the encoded length, in bits1, of target variables data Y
given explanatory data X and model M , L(M) is the encoded length, in bits,
of the model, and L(D,M) is the total encoded length and the sum of both
terms. Note that the data encoding changes from L(D | M) to L(Y | X,M)
to reflect our supervised setting and how we are only concerned with encoding
the target variables Y in the goodness of fit part of MDL. Intuitively, the best
model M∗ is the model that results in the best trade-off between how well
the model compresses the target data and the complexity of that model—thus
minimising redundancy and automatically selecting the best subgroup list size.

MDL and probabilities. Although the MDL principle measures the length of
encodings in bits, every encoding can be translated to probabilities by the
Shannon-Fano code (Shannon, 1948):

L(A) = − log Pr(A), (12)

where A is an event—in our case, it can be the model M , the target variables
Y, or any of their subparts defined in Section 5 and 6—and Pr(A) its probabil-
ity. Thus, each code length in MDL can be directly interpreted as the negative
logarithm of a probability. Consequently, the model with the smallest total
encoded length L(D,M) is that one having the largest probability Pr(D,M).

1 To obtain code lengths in bits, all logarithms in this paper are to the base 2.
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3.4 Multiple-hypothesis testing

Multiple-hypothesis testing is the task of testing more than one hypothesis2 on
the same data (Shaffer, 1995). To avoid increasing the Type I error rate, i.e.,
selecting models that are false discoveries, we should compensate for the fact
that we test multiple hypotheses. For clarity, note that our focus here is on
multiple-hypothesis testing to select a single best model from a class of models
for one dataset, not selecting the best algorithm over multiple datasets. For
an in-depth explanation of the latter, please refer to Demšar (2006).

In frequentist statistics, one usually accepts a model based on a p-value and an
assigned significance level α. Suppose you have chosen α equal to 0.05 and you
are testing only two hypotheses; then, the α value tells us that by chance, you
have a 0.05 probability of having evidence in favour of one model when it is
false and should be rejected. If we would instead test 100 different models (and
these are considered independently), it is easy to see that we have a chance of
at least 5 models being acceptable when they should not have been. One way
to counteract this effect is by adjusting the significance level to accommodate
the number of hypotheses tested. Several methods exist to that end, and the
conceptually more simple is the Bonferroni correction, where one divides α by
the number of hypotheses/models being tested.
In the case of Bayesian statistics and the MDL principle, this translates to
using Pr(M) and L(M), respectively, to account for all possible models that
are tested as hypotheses. In Section 5.1 we will show how to interpret L(M)
as a correction for multiple-hypothesis testing in the context of subgroup lists.

4 Problem statement: robust subgroup discovery

This section formally introduces the problem we propose to solve: robust sub-
group discovery. Informally, the problem can be described as:

Find the globally optimal set or list (i.e., an ordered set) of non-redundant
and statistically robust subgroups that together explain relevant local
deviations in the data with respect to specified target variables.

As this is a broad problem, we need to narrow it down: we only deal with
subgroup lists, define the optimal list using the MDL principle, and propose
an iterative greedy algorithm that guarantees that each subgroup added to
the list is statistically robust. Our MDL-based formulation of subgroup lists
includes the MDL-based top-k subgroup discovery problem (Section 7.1), which
gives a direct relationship to subgroup discovery as it was originally introduced.

To formally state our problem, we first need to introduce the subgroup list
model class, which we will do in Section 4.1. Then, based on this model,

2 In this manuscript, each subgroup list model forms a hypothesis.



20 Hugo M. Proença et al.

we provide our problem statement in Section 4.2. Finally, in Section 4.3 we
propose a quality measure that quantifies the goodness of fit of subgroup lists.

4.1 Subgroup list model class

Subgroup lists are a sequentially ordered set of subgroups; see Figure 3. Given
its ordered format, a subgroup list always partitions the data, i.e., each instance
of data is covered by one and only one subgroup (or the default rule). For
example, if a subgroup list contains 4 subgroups, the dataset will be partitioned
into 4 + 1 parts, one for each subgroup plus one for the dataset/default rule.
A subgroup down the list, such as the second subgroup, should be interpreted
as: the second subgroup is active only when its description is active and the
description of the first subgroup is not active.

More specifically, as we are only interested in finding subgroups for which the
target deviates from the overall distribution, we assume Y values distributed
according to Θ̂d by default (last line in Figure 3). Thus, for each subset in
the data where the target distribution deviates from Θ̂d and a description
exists, a subgroup specifying a different distribution Θ̂a could be added to the
list. Ordering the rules formed by subgroups S = {s1, · · · , sω} and adding the
dataset rule at the end (default rule) leads to a subgroup list M of the form
of Figure 3.

Regarding the possible distributions Dist, we use categorical distributions for
the nominal targets, i.e., Dist Cat(p̂1, · · · , p̂k), or normal distributions for the
numeric target case, i.e., Dist N (µ̂i, σ̂i).

The categorical distribution is a natural choice for describing the probabilities
of classes (Letham et al., 2015). For numeric targets, several distributions
can be selected; however, the normal distribution captures two properties of
interest in numeric variables, i.e., centre and spread, while being robust to
cases where the data violates the normality assumption. Also, it allows for a
closed-form solution from a Bayesian (Jeffreys, 1998) and MDL (Grünwald,
2007) perspective. For an analysis of the direct use of the numeric empirical
distribution in subgroup discover, please refer to Meeng et al. (2020).

s1: IF a1 v x THEN y1 ∼ Dist(Θ̂1
1) · · · yt ∼ Dist(Θ̂1

t )
...

sω: ELSE IF aω v x THEN y1 ∼ Dist(Θ̂ω1 ) · · · yt ∼ Dist(Θ̂ωt )

dataset: ELSE y1 ∼ Dist(Θ̂d1) · · · yt ∼ Dist(Θ̂dt )

Fig. 3 Generic subgroup list model M with ω subgroups S = {s1, ..., sω} and
t (number of target variables) distributions per subgroup



Robust subgroup discovery 21

4.1.1 Subgroup lists versus subgroup sets

While we formulate our theory solely for subgroup lists, each global model
has advantages and disadvantages. On the one hand, subgroup lists allow for
a sequential interpretation of the subgroups, generally in decreasing order of
their importance. Moreover, each instance in the data is associated with only
one subgroup. On the other hand, subgroup sets allow for a semi-independent
interpretation of each subgroup and can be considered a more general frame-
work. These properties tend to make sets more interpretable when looking at
all the subgroups. At the same time, lists are usually more interpretable from
an instance perspective—as each instance is only covered once—and on the
contribution of each subgroup to the global model.
However, as the number of subgroups in a model increases, both types of
models become harder to interpret. In the case of subgroup lists, one must
inspect the covering subgroup and all the preceding ones for each instance. In
the case of subgroup sets, there can be a considerable overlap for each instance,
making it hard to assess the individual contribution of each subgroup.
In addition to being one of the first subgroup set discovery models, the main
advantage of selecting subgroup lists, in our case, is their property of un-
ambiguously partitioning the data into non-overlapping parts. This property
allows us to use the MDL principle to formulate the robust subgroup discovery
problem for subgroup lists optimally.

4.1.2 Difference between subgroup lists and (predictive) rule lists

A subgroup list defined above corresponds to a probabilistic rule list with ω =
|S| rules and a last (default) rule fixed to the overall empirical distributions
for each target variable (Proença and van Leeuwen, 2020). Fixing this last
‘rule’ distribution is crucial and differentiates a subgroup list from a rule list
as used in classification and/or regression (Proença, 2021), as this enforces
the discovery of a set of subgroups whose individual target distributions all
substantially deviate from the overall target distribution (dataset rule). It is
shown in Section 7.1 that the objective of finding a subgroup list with this
format is equivalent to top-k subgroup discovery when finding subgroup lists
with just one subgroup. A theoretical comparison of the difference between
the objectives of predictive rule lists and subgroup lists from an MDL-based
perspective is given in Appendix D.

4.2 Formal problem statement

Let D be a dataset consisting of explanatory variables data X and target
variables data Y, i.e., D = {X,Y}. Let M ∈ M(D) be all possible subgroup
lists for D formed by an ordered set of subgroups S and a dataset rule, as
in Figure 3. Let s ∈ Ω(D) be all possible subgroups in D with respect to
all possible descriptions in X, which are formed by conjunctions of conditions
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(pattern language) on the possible values X of the explanatory variables X ∈
X. The conditions vary by variable type X and can be an interval over the
reals R for numeric, e.g., consumption − city ∈ [0, 8] in Figure 2, or equality
for nominal or Boolean, e.g. weight = light in Figure 2. The target description
of each subgroup is restricted to Categorical or Normal distributions.
Given the definition of all possible subgroup lists in a dataset, the objective
is to return the subgroup list M that minimises the MDL two-part code of
Eq. (11), i.e., the objective is to find

M∗ = arg min
M∈M

[
L(Y | X,M) + L(M)

]
,

s.t. ∀si∈MΞ(Θ̂i, Θ̂d) > 0,
(13)

where the first part concerns the global optimality of the subgroup list, on the
complete dataset, while the constraint Ξ(Θ̂i, Θ̂d) states that there should be
more evidence in favour of having each subgroup in the list than for using the
overall dataset distribution (for the motivation on using the MDL principle
refer to Section 4.2.1).
To operationalise this, L(Y | X,M) and L(M) need to be defined. Thus,
we propose a model encoding L(M) in Section 5.1 and a data encoding in
Section 6. Then, Section 7 shows that the data encoding equals WKL-based
subgroup discovery and Bayesian testing, reflecting the statistical robustness
of each subgroup in the list.
Finally, as finding the optimal subgroup list according to this formulation is
unfeasible for most real-world problems, Section 8 proposes SSD++, a heuris-
tic algorithm (for NP-Hard intuition, check Section 4.2.2). Moreover, this al-
gorithm approximates the MDL minimisation by restricting the search space
of possible subgroups and subgroup lists. Nonetheless, it guarantees that the
most statistically robust subgroup found by beam search is added to the sub-
group list. Indeed, the greedily adding a subgroup automatically accounts for
the statistical constraint of Eq (13), i.e., ∆βL(D,M ⊕ s) = Ξ(Θ̂i, Θ̂d) > 0.

4.2.1 Motivation for the MDL principle

The MDL principle is used due to its statistical robustness and objectivity
when compared to other approaches (for a short introduction to model selec-
tion, please refer to Section 3). First, it does not assume that the model that
generated the data belongs to the model class used. Second, it allows the data
encoding, i.e., L(Y | Y,M) = − log Pr(Y | Y,M) to be computed with sev-
eral optimal methods, including the one in Bayesian statistics—Bayes updating
rule (Grünwald and Roos, 2019). Third, from a model encoding perspective,
i.e., L(M) = − log Pr(M), which is the most subjective part of the encoding,
the MDL principle recommends choosing an encoding that uses the minimum
number of assumptions, similarly to the max entropy principle (Jaynes, 1957).
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4.2.2 Finding optimal subgroup lists is NP-Hard

The general task of finding an ordered set of patterns (Mielikäinen and Man-
nila, 2003) and that of finding the smallest decision list for a dataset D (Rivest,
1987) are both NP-hard problems. Thus, it is trivial to see that the problem of
finding a subgroup list, which is a probabilistic generalisation of the decision
list, is NP-hard.

4.3 A new measure for subgroup lists: the sum of WKL divergences

This section extends the WKL divergence to subgroup lists, allowing us to
compare the quality of different algorithms that mine subgroup lists. Also, it
is shown in Section 7.1 to correspond to one part of the data encoding of our
MDL formulation.
Following the introduction of quality measures in Section 2.2 and subgroup
lists in the previous sections, we can extend the KL-based measure of Eq. (4)
for individual subgroups to measure subgroup lists. That is, we propose the
Sum of Weighted Kullback-Leibler divergences (SWKL), which can be inter-
preted as the sum of weighted KL divergences for the individual subgroups:

SWKL(S) =

∑ω
i=1 niKL(Θ̂ij ; Θ̂

d
j )

|D| , (14)

where i is the subgroup index in a subgroup list, ω is the number of subgroups
in S, and |D| is the number of instances in D. The latter is used to normalise
the measure and compare values across datasets. In the case of multiple target
variables, the normalisation could also include the number of targets, but we
do not use this in this work. The SWKL measure assumes that the data is
partitioned per subgroup and is based on the assumption that subgroups can
be interpreted sequentially as a list.
An advantage of the SWKL measure is that it can be used for any target vari-
able(s), as long as probabilistic models are used. Note that computing SWKL
is straightforward for subgroup lists, but not for subgroup sets as multiple
subgroups can cover an instance. For subgroup sets, it would be necessary to
explicitly define the type of probabilistic overlap, e.g., additive or multiplica-
tive mixtures of the individual subgroup models.

Overfitting. It should be noted that this measure only quantifies how well
a list of subgroups captures the deviations in a given dataset and is prone
to overfitting: the higher the number of subgroups, the easier it is to obtain
a higher value as there is no penalty for the number of subgroups (or their
complexities, for that matter). As such, SWKL can be seen as a measure of
‘goodness of fit’ for subgroup lists. This is not an issue for our approach as
our MDL-based criterion naturally penalises for multiple hypothesis testing
and the complexity of the individual subgroups, which is empirically validated
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by the statistical robustness analysis Section 9.5. Moreover, overfitting does
not seem to be an issue in our empirical comparisons with other algorithms of
Section 9.3 and 9.4, as the number of subgroups found was similar for most
algorithms, rendering the subgroup lists comparable based on SWKL.

5 Model encoding of subgroup lists

We presented the MDL principle in its generality in Section 3.3 and the specific
problem statement of finding optimal subgroup lists in Section 4.2. In this sec-
tion, we define the model encoding L(M) of subgroup lists and its relationship
to multiple hypothesis testing.

5.1 Model Encoding

Following the MDL principle (Grünwald, 2007), we need to ensure that 1)
all models in the model class, i.e., all subgroup lists for a given dataset, can
be distinguished; and 2) larger code lengths are assigned to more complex
models. To accomplish the former we encode all elements of a model that can
change, while for the latter we resort to two different codes: when a larger
value represents a larger complexity we use the universal code for integers
(Rissanen, 1983), denoted3 LN, and when we have no prior knowledge but
need to encode an element from a set we choose the uniform code.
Specifically, the encoded length of a model M over variables in X is given by

L(M) = LN(|S|) +
∑
ai∈S

LN(|ai|) + log

(
m

|ai|

)
+
∑
v∈ai

L(v)

 , (15)

where we first encode the number of subgroups |S| using the universal code
for integers, and then encode each subgroup description individually. For each
description, first the number |ai| of variables used is encoded, then the set of
variables using a uniform code over the set of all possible combinations of |ai|
from all explanatory variables, and finally the specific condition for a given
variable. As we allow variables of two types, the latter is further specified by

L(v) =

{
log |Xv| if v is nominal

LN|2(|nop|) + logN(nop, ncut) if v is numeric
(16)

where the code for each variable type assigns code lengths proportional to
the number of possible parts the variable’s domain can partition the dataset.
Note that this seems justified, as more parts imply more potential spurious
associations with the target that we would like to avoid. For nominal variables
this is given by the size of the domain, i.e., the number of categories in a
nominal variable. For numeric variables it equals the number of operators

3 LN(i) = log k0 + log∗ i, where log∗ i = log i+ log log i+ . . . and k0 ≈ 2.865064.
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used LN|2(|nop|)4 plus the possible number of outcomes N(nop, ncut) given the
operators and ncut cut points. The number of operators for numeric variables
can be one or two, as there can be conditions with one (e.g., x ≤ 2) or two
operators (e.g., 1 ≤ x ≤ 2), which is a function of the number of possible
subsets generated by ncut cut points. Note that we here assume that equal
frequency binning is used, which means that knowing X and ncut is sufficient
to determine the cut points.
In the case of top-k subgroup discovery, i.e., only be interested in the top indi-
vidual subgroups, the model becomes a subgroup list with only one subgroup.
Thus, the model encoding of Eq. (15) remains the same except for the first
term (LN(|S|)), which should be removed. This is because it is not required to
account for a subgroup list with more than one subgroup.

Example 5 (continuation): Let us assume that the subgroup list of the Auto-
mobile example of Figure 2 is composed of only the first subgroup. In that
case the list only has one subgroup with description: {weight = heavy &
consumption-city ≤ 8 km/L }. Taking into account that the dataset has 17
variables, |Xweight| = 3 and only 3 cut-points were used for numeric attributes,
the expression of the model length is given by:

L(M) = LN(1) + LN(2) + log

(
17

2

)
+ log |Xweight|+

[
LN|2(1) + log 2ncut

]
= 1.52 + 2.52 + 7.09 + 1.59 + 0.77 + 2.59

= 16.08 bits

It is important to note that the length of the model can (and should) be a
real number, as we are only concerned with the idea of compression, not with
materialising and transmitting the actually encoded data (Grünwald, 2007).

5.2 Multiple-hypothesis testing and model length.

As presented in the previous section, the model encoding L(M) must be able
to distinguish all possible models that could be learned for a dataset D. In
fact, we are counting all possible models and then giving them a probability of
occurring—with a smaller probability to models with fewer terms. Looking at
Eq. (15) in particular, we can see that each term counts different parts of the
model: 1) LN(|S|) counts the possible number of subgroups in subgroup lists;
2) LN(|ai|) counts the possible length of a subgroup description; 3) log

(
m
|ai|
)

counts the possible pairs of descriptions of size |ai|; and 4) L(v) counts the
possible values a variable can have. Together, these four terms count all possi-
ble subgroup lists. In some cases, we are being extra conservative and counting

4 LN|2 is the universal code for integers with codes restricted to n = 1 or 2. This can be
obtained by applying the maximum entropy principle to LN when it is known that it cannot
take values of n > 2.
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more models that do not exist in a dataset, e.g., by using LN(|S|) for the num-
ber of subgroups we allow for subgroup lists with infinite subgroups—above
the number of instances in the data. Thus, the MDL principle is actively try-
ing to avoid false positive or Type I error models by penalising all the models
that could be learned and compared to each other.

6 Data encoding of target variables

When the model is defined, what remains is to define the length function of
the target data given the explanatory data and model, L(Y | X,M). In this
section, we show how to encode the target data Y by dividing it into smaller
subsets that can be encoded individually and then summed together, and why
there are different types of data encoding for each of the subsets. The specifics
of encoding nominal and numeric targets are described in Sections 6.1 and 6.2,
respectively.

Cover of a subgroup in a subgroup list. First, we observe that for any given
subgroup list of the form of Figure 3, any individual instance (xi,yi) can only
be ‘covered’ by one subgroup. That is, the cover of a subgroup ai, denoted
Da, depends on the order of the list and is given by the instances where its
description occurs minus those instances covered by previous subgroups:

Di = {Xi,Yi} = {(x,y) ∈ D | ai v x ∧

 ∧
∀i′<i

ai′ 6v x

}. (17)

Next, let ni = |Di| be the number of instances covered by a subgroup (also
known as usage). In case an instance (xi,yi) is not covered by any subgroup
s ∈ S then it is ‘covered’ by the default rule. The instances covered by the
default rule Dd are the ones not covered by any subgroup (hence the name
default rule) and formally defined as:

Dd = {Xd,Yd} = {(x,y) ∈ D | ∀ai∈Mai 6v x}. (18)

Now, given that the subsets for each subgroup or default rule and each target
variable are well-defined, one can—for each of the rules and targets—estimate
the parameters of its probabilistic distribution using the maximum likelihood
estimator.
Note that this shows us that a subgroup si ∈M is fully defined by its descrip-
tion ai in a dataset D, and we will interchangeably refer to the subgroup by
its description and to its elements (statistics, parameters, distributions, etc.)
by its index i when obvious from context.
As the subgroup list induces a partition of the data, the total length of the
encoded data can be given by the sum of its non-overlapping parts:

L(Y | X,M) = L(Yd | Θd) +
∑
si∈S

L(Yi), (19)
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where Θd is the vector of parameters for each variable Θd1 , . . . , Θ
d
t . Observe

that we dropped Xa as these are not necessary to encode Ya but only to
generate the partition of the data, and also dropped the parameters Θi of the
subgroups as we do not know what are their parameters until we see the data.
This last part will be clarified in the next paragraphs, where we describe how
to encode subsets without knowing the parameters.
As a side-note, note that Eq. (19) concerns the encoding of any supervised
partition of the data, which allows to directly quantify the quality of any tree
learning method—each such tree induces a partition of the data.

Encoding data of t (assumed) independent target variables. As each target
variable is assumed independent from each other the encoding of target data
is given by the sum of their individual encodings:

L(Y | X,M) = − log

 t∏
j=1

Pr(Yj | X,M)

 =

t∑
j=1

L(Yj | X,M). (20)

Integrating (19) and (20), one obtains:

L(Y | X,M) =

t∑
j=1

L(Y dj | Θdj ) +
∑
si∈S

L(Y ij )

 (21)

Two types of data encoding: data encoding can be separated in two different
categories: 1) with known parameters; and 2) with unknown parameters.

1) Known parameters: when the parameters of a distribution are known, one
can encode the data points directly using the probability for those points given
by the distribution with the known parameters. Thus, the encoding of points
Y ij (jth variable and ith subgroup) is equal to the negative logarithm of their

probability given by known parameters Θ̂ij :

L(Y ij | Θ̂ij) =
∑
y∈Y i

j

− log Pr(y | Θ̂ij). (22)

This type of code is used in the case of the default rule of a subgroup list, as
the parameters Θ̂dj are equal to the marginal distribution of variable Yj and
are constant for each dataset. Note that this is the key difference between a
subgroup list and a predictive rule list : the last rule of a subgroup list is fixed
to the marginal distribution, while in the (predictive) rule list its parameters
are unknown and depend on the subset Dd.

2) Unknown parameters: when the parameters are unknown we need to encode
both the parameter values and the data points. We have two possibilities: 1)
crude MDL, i.e., encoding the probabilities using a suboptimal probability
distribution and then applying the Shannon-Fano code, i.e., the logarithm of
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the empirical probability (Shannon, 1948); or 2) employ an optimal encoding
of both parameters of the distribution and data points together (Grünwald and
Roos, 2019). In this work, we employ optimal encoding of parameters, as it
guarantees optimality in the sense that the encoding is the best possible in the
worst-case scenario, i.e., in case the sample of the data is not representative
of the population. For our problem, three main types of optimal encodings
exist, which are, in increasing order of optimality guarantees: 1) prequential
plug-in; 2) Bayesian; 3) Normalised Maximum Likelihood (NML). While the
first two are asymptotically optimal, the NML encoding is optimal for fixed
sample sizes.
Depending on the target type, we employ the best encoding possible while
being computationally feasible, i.e., we require adequate run-time for our al-
gorithm. For nominal targets, we present an NML encoding for both the prob-
abilities of each class and the data points in Section 6.1, which is a theoretical
improvement over the prequential plug-in code that was recently proposed for
classification rule lists by Proença and van Leeuwen (2020). For numeric tar-
gets, we resort to a Bayesian encoding, as recently proposed by Proença et al.
(2020), as the NML code is not computationally feasible for that case.

6.1 Data encoding: nominal target variables

When the data have one or more nominal targets, the distributions in the
probabilistic rules (2) are categorical distributions Cat(Θ), each with a set of
parameters Θ = {p1, · · · , pk} representing the k classes:

Pr(y = c | p1, · · · , pk) = pc, subject to

k∑
c=1

pc = 1. (23)

This implies a subgroup of the form:

a 7→ y1 ∼ Cat(p1, · · · , pk), · · · , yt ∼ Cat(p1′ , · · · , pk′),
where k and k′ are the number of classes Y1 and Yt, respectively. To simplify
the introduction of concepts we will assume we only have one target variable
in Y, and then generalise the results to multiple variables at the end. Thus,
throughout this section Y becomes Y , and the parameters of each subgroup si
become Θ̂i = {p1|i, · · · , pk|i} as there is only one variable with k classes, where
p1|i is the probability of class 1 for subgroup i, i.e., Pr(c = 1 | ai). The general
form of a subgroup list with one nominal target takes the form of Figure 4.

In the following sections, we will derive the data encoding for subgroup lists
with categorical distributions. First, in Section 6.1.1 we introduce the maxi-
mum likelihood estimators that will be needed to derive the MDL encodings.
Then, in Section 6.1.2, it is shown how to encode a categorical distribution
when its parameters are known, which is the case for the default rule of a
subgroup list. Finally, in Section 6.1.3 it is shown how to encode a categorical
distribution when the parameters of the distribution are unknown.
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s1: IF a1 v x THEN y ∼ Cat(p̂1|1, · · · , p̂k|1)
...

sω: ELSE IF aω v x THEN y ∼ Cat(p̂1|ω, · · · , p̂k|ω)

dataset: ELSE y ∼ Cat(p̂1|d, · · · , p̂k|d)

Fig. 4 Generic subgroup list model M with ω subgroups S = {s1, ..., sω} and
a single nominal target Y with k categories

6.1.1 Maximum Likelihood (ML) estimation of the parameters

Each description ai uniquely defines a subset Di given by its cover Eq. (17).
However in the nominal case for each class label c, we also need to find its
subset of the data Dc|i, formally given by:

Dc|i = {(x, y) ∈ Di | y = c}. (24)

which allows us to compute the usage over each class nc|i = |Dc|i|. Now, we
are in a position to use the maximum likelihood estimator for the parameters
Θ̂i of each categorical distribution as:

p̂c|i =
nc|i

ni
. (25)

We can show how to encode each subset of target values with the known pa-
rameters of the distribution—the default rule of a subgroup list—and unknown
parameters—all the subgroups.

6.1.2 Encoding categorical distributions with known parameters

To encode target values with known parameters—as is the case for the default
rule of a subgroup list—we can directly use Eq. (22) with given parameter
estimates Θ̂d = p̂1|d, · · · , p̂k|d (marginal distribution over the whole dataset):

L(Y d | p̂1|d, · · · , p̂k|d) =
∑
c∈Y
−nc|d log p̂c|d = −`(Θ̂d | Y d), (26)

where `(Θ̂d | Y d) is the log-likelihood of the parameter set Θ̂d, and nc|d denotes

the number of points associated with each class c covered by default rule Y d.

6.1.3 Encoding categorical distributions with unknown parameters

When the parameters are unknown—as is the case for each individual subgroup
distribution—we will employ the Normalised Maximum Likelihood (NML)
code, as it “is optimal in the sense that it achieves the minimax optimal code
length regret” (Grünwald, 2007).
Although the expression of the NML code can be daunting, its intuition is
very clear (Kontkanen et al., 2005), i.e., the NML code is equivalent to first
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encoding all maximum likelihood estimates of sequences Z of ni points based
on their likelihoods, and then encoding data Y i with its maximum likelihood
estimate Θ̂i as in Eq. (26). Formally, the NML code length of the subset Y i

is given by5:

LNML(Y i) = − log

∏
y∈Y i Pr(y | Θ̂i)∑

Z∈Yni

∏
z∈Z Pr(z | Θ̂Z)

=
∑
c∈Y
−nc|i log p̂c|i + log

∑
Z∈Yni

∏
z∈Z

Pr(z | Θ̂Z)

= −`(Θ̂i | Y i) + C(ni, k)

(27)

where Yni is the space of all possible sequences of ni points with cardinality
k = |Y| (possible values per point), Θ̂Z is the maximum likelihood estimate
over Z, C(ni, k) is the complexity—as it is called in MDL literature (Grünwald,
2007)—of the multinomial distribution over ni points and k categories. Note
that this term can be efficiently computed in sub-linear time O(

√
dni + k)

if approximated by a finite floating-point precision of d digits (Mononen and
Myllymäki, 2008).

Finally, inserting (26) and (27) in (21) we obtain, for the total data encoding
of a subgroup list:

L(Y | X,M) =

t∑
j=1

L(Y dj | Θd) +
∑
si∈S

LNML(Y ij )

 . (28)

Example 6 (continuation): Let us revisit the Zoo subgroup list example of
Figure 1 and compute the length of NML encoding of the first subgroup. To
compute it we just need to get the probabilities associated with each cate-
gory ({0; 0; 0.56; 0.44; 0; 0; 0}), the number of samples covered by each of them
({0; 0; 10; 8; 0; 0; 0}), and the total number of categories k = |Y| = 7. Given
these, the length of encoding of the data Y 1 is given by:

LNML(Y 1) = (−10 log 0.56− 8 log 0.44) + C(18, 7)

= 17.84 + 10.42

= 28.26 bits.

6.2 Data encoding: numeric target variables

When we have one or more numeric target variables, the consequent of proba-
bilistic rules as in Eq. (2) are now normal distributions N (Θ) with parameters
Θ = {µ, σ}, and take the following form:

Pr(y | µ, σ) =
1√

2πσ2
exp

(
− (y − µ)2

2σ2

)
,

5 For details on the derivation of Eq. 27, please see Appendix A.
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where we use Pr(y | µ, σ) to denote the probability density function (pdf),
which is a slight abuse of notation that we admit to unify the whole work.
This translates to a probabilistic rule of the form:

a 7→ y1 ∼ N (µ̂a1, σ̂a1), · · · , yt ∼ N (µ̂at, σ̂at) (29)

To simplify the introduction of concepts, we will again assume we have only
one target variable in Y, and generalise the results to multiple variables at the
end. Thus, throughout this section Y becomes Y , and the parameters of each
subgroup si become Θi = {µi, σi} as there is only one variable. The general
form of a subgroup list with normal target distribution is given in Figure 5.

s1: IF a1 v x THEN y ∼ N (µ̂1, σ̂1)
...

sω: ELSE IF aω v x THEN y ∼ N (µ̂ω, σ̂ω)

dataset: ELSE y ∼ N (µ̂d, σ̂d)

Fig. 5 Generic subgroup list model M with ω subgroups S = {s1, ..., sω} and
a single numeric target Y

In the following subsections, we will derive the data encoding for subgroup
lists with normal distributions. First, in Section 6.2.1 we introduce the maxi-
mum likelihood estimators that will be needed to derive the MDL encodings.
Then, in Section 6.2.2 we show how to encode a normal distribution when its
parameters µ and σ are known, such as is the case for the default rule of a
subgroup list. Finally, in Section 6.2.3 we show how to encode a normal distri-
bution using an uninformative prior when the parameters of the distribution
are unknown.

6.2.1 Maximum Likelihood (ML) estimation of the parameters

Each description ai uniquely defines a subset Di given by its cover (17), which
allows to estimate the parameters of each normal distribution using the max-
imum likelihood estimate over Y i:

µ̂i =
1

ni

∑
y∈Y i

y, (30)

σ̂2
i =

1

ni

∑
y∈Y i

(y − µ̂i)2, (31)

where σ̂2
i is the biased estimator such that the estimate times ni equals the

Residual Sum of Squares, i.e., niσ̂
2
i =

∑
y∈Y a(y − µ̂i)

2 = RSSi. Note that
the parameters of the default rule of Figure 5 are fixed for a dataset and thus
correspond to estimates µ̂d and σ̂d over all target values Y .
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As each subgroup list defines a partition of the data, we can encode each
target value part, Y i or Y d, separately and sum them to obtain the total
encoding of Y . In the case of subgroup lists, the last rule–i.e., default rule—has
fixed parameters equal to the overall dataset distribution, while the subgroups
parameters are not known in advance and have thus to be encoded together
with the data points.
We start by showing how to encode the subset of target values with the default
‘rule’—known parameters of the distribution—and then show how to encode
each subgroup subset—unknown parameters of the distribution.

6.2.2 Encoding normal distributions with known parameters

The target values not covered by any subgroup Y d, as defined in (18), are
covered by the default dataset ‘rule’ and distribution at the end of a subgroup
list. As the statistics Θ̂d = {µ̂d, σ̂d} are known and constant for a given dataset,
one can simply encode the instances using this (normal) distribution, resulting
in encoded length

L(Y d | µ̂d, σ̂d) = − log

 ∏
y∈Y d

1√
2πσ̂2

d

exp

(
(y − µ̂d)2

2σ̂2
d

)
=
nd
2

log 2π +
nd
2

log σ̂2
d +

 1

2σ̂2
d

∑
y∈Y d

(y − µ̂d)2
 log e.

(32)

The first two terms are normalising terms of a normal distribution, while the
last term represents the Residual Sum of Squares (RSS) normalised by the
variance of the data. Note that when Yd = Y , i.e., the whole dataset target,
RSS is equal to ndσd and the last term reduces to nd/2 log e.

6.2.3 Encoding normal distributions with unknown parameters

In contrast to the previous case, here we do not know a priori the statistics
defining the probability distribution corresponding to the subgroup, i.e., µ̂ and
σ̂ are not given by the model and thus both need to be encoded. For this,
we resort to the Bayesian encoding of a normal distribution with mean µ and
standard deviation σ unknown, which was shown to be asymptotically optimal
(Grünwald, 2007). The optimal code length is given by the negative logarithm
of a probability, and the optimal Bayesian probability for Y a is given by

LBayes(Y
i) =

− log

∫ +∞

−∞

∫ +∞

0

(2πσ)−
ni
2 exp

− 1

2σ2

∑
y∈Y i

(y − µ)2

w(µ, σ) dµdσ,
(33)

where w(µ, σ) is the prior on the parameters, which needs to be chosen.
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Choosing the prior. The MDL principle requires the encoding to be as unbi-
ased as possible for any values of the parameters, which leads to the use of
uninformative priors. The most uninformative prior is Jeffrey’s prior, which
is 1/σ2 and therefore constant for any value of µ and σ, but unfortunately
its integral is undefined, i.e.,

∫ ∫
σ−2 dσ dµ = ∞. Thus, we need to make the

integral finite, which we will do next.
It should be noted that when using normal distributions with Bayes factors—
Bayesian equivalent to traditional statistical testing—the authors tend to also
add a normal prior on the effect size, as e.g., δ = µ/σ ∼ N (0, τ) (Jeffreys,
1998; Gönen et al., 2005; Rouder et al., 2009). Nonetheless, this prior gives
a higher probability to values of µ closer to zero, which is a bias that we do
not want to impose. Thus we only use Jeffrey’s prior, which converges6 to the
Bayes Information Criterion (BIC) for large n.

Now, given the our prior w(µ, σ) = 1
σ2
√
2π

—where
√

2π was added for normali-

sation reasons—the remaining question is how we can make the integral finite.
The most common solution, which we also employ, is to use u data points
from Y i, denoted Y i|u, to create a proper conditional prior w(µ, σ | Y i|u). As
there are only two unknown parameters, we only need two points hence u = 2
(Grünwald, 2007); for more on the interpretation of such “priors conditional
on initial data points”, see Grünwald and Roos (2019). Consequently, we first
encode Y i|2 with a non-optimal code that is readily available—i.e., the dataset
distribution of Eq. (32)—and then use the Bayesian rule to derive the total
encoded length of Y i as

LBayes2.0(Y i) = − log
PBayes(Y

i)

PBayes(Y i|2)
P (Y i|2 | µd, σd)

= LBayes(Y
i) + Lcost(Y

i|2),

(34)

where Lcost(Y
i|2) = L(Y i|2 | µd, σd) − LBayes(Y

i|2) is the extra cost incurred
by encoding two points non-optimally. After some re-writing7 we obtain the
encoded length of the y values covered by a subgroup Y i as

LBayes2.0(Y i) = LBayes(Y
i) + Lcost(Y

i|2)

= 1 +
ni
2

log π − logΓ

(
ni
2

)
+

1

2
log(ni) +

ni
2

log niσ̂
2
i + Lcost(Y

i|2),
(35)

where Γ is the Gamma function that extends the factorial to the real numbers
(Γ (n) = (n − 1)! for integer n) and µ̂i and σ̂i are the statistics of Eqs. (30)
and (31), respectively. Note that for Y i|2 any two unequal values (otherwise
σ̂2 = 0 and LBayes(Y

i|2) = ∞) can be chosen from Y a, thus we choose them

6 See proof in Appendix B.1.
7 The full derivation of the Bayesian encoding and an in-depth explanation are given in

Appendix B.
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such that they minimise Lcost(Y
i|2). Finally, inserting (32) and (35) in (21)

we obtain for the total data encoding for a subgroup list:

L(Y | X,M) =

t∑
j=1

L(Y dj | Θd) +
∑
si∈S

LBayes2.0(Y ij )

 .

Example 7 (continuation): We revisit the Automobile subgroup list of Figure 2
and find the length of the Bayes2.0 encoding (Eq. (35)) of the first subgroup.
To compute it we need to get the statistics of the subgroup (Θ̂1 = {µ̂1 =
35; σ̂1 = 8}), the number of samples it covers (n1 = 11), the dataset statistics
(Θ̂d = {µ̂d = 13; σ̂d = 8}), and the two points closest to the dataset mean
Y 1|2 = {14; 31} that makes the encoding proper (and which are not available in
the example information). Assuming that Lcost(Y

i|2) = 0.69bits for simplicity,
the length of the encoding of Y 1 is given by:

LBayes2.0(Y 1) =1 +
11

2
log π − logΓ

(
11

2

)
+

1

2
log(11) +

11

2
log 11 · 82

+ Lcost(Y
i|2)

=58.06 + 0.69

=58.75 bits.

7 MDL-optimal subgroup lists relation to WKL-based SD and
Bayesian testing

This section investigates the equivalence of our MDL-optimal formulation of
subgroup lists to top-k subgroup discovery with WKL and Bayesian testing
with multiple hypotheses. First, Section 7.1 shows that when our subgroup
lists only contain one subgroup, they correspond top-1 subgroup discovery
with WKL as a quality measure. Second, Section 7.2 shows that adding one
subgroup to the list—MDL greedy gain—corresponds to Bayesian proportions,
multinominal, and t-test for binary, nominal, and numeric targets, respectively,
plus a term for multiple-hypothesis testing.

7.1 Relationship of MDL-optimal subgroup lists to WKL-based SD

We now investigate the relationship between finding an MDL-optimal sub-
group list and WKL-based top-k subgroup discovery. Remember that WKL
is a subgroup discovery measure based on information-theory (van Leeuwen,
2010) and takes the form of Eq. (3) for a general probability distribution; we
describe it in more detail in Subsection 2.2.1.

Now, assume that we have a single target variable (Y instead of Y) and a
subgroup list consisting of just one subgroup s with description a (and the
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default rule). Next, let us turn the MDL minimisation problem into a maximi-
sation problem by multiplying Eq. (11) by minus one and adding a constant
(for each dataset) L(Y | Θd) to obtain:

s∗ = arg max
s∈M

[
L(Y d | Θd)− L(Y | X,M)− L(M)

]
.

In the case of a subgroup list with one subgroup and one target, the data
encoding of Eq. (28) for nominal targets or Eq. (6.2.3) can be substituted by

L(Y | X,M) = L(Y d | Θd) + L∗(Y
a)

where L∗ stands for LNML or LBayes2.0 for nominal and numeric targets, re-
spectively. Also, note that Y d is given by all the points not covered by the
subgroup description a, i.e., Y ¬a. Thus, we can further develop the maximi-
sation problem to8:

L(Y | Θ̂d)− L(Y | X,M)− L(M) '
' naKL(Θ̂a; Θ̂d)− COMP(na, Dist)− L(M),

(36)

where naKL(Θ̂a; Θ̂d) is the Weighted Kulback-Leibler divergence from Θ̂a to
Θ̂d, and COMP(na, Dist) is the complexity associated with the target probabil-
ity distribution—C(na, k) for categorical and log na for normal. The equality
of the expression holds for categorical and is asymptotically equal for the nor-
mal. This result shows that finding the MDL-optimal subgroup is equivalent
to finding the subgroup that maximises WKL, plus two extra terms: one that
defines the complexity of the distribution C(na, k), and another that defines the
complexity of the subgroup L(M).

Dispersion-correction quality measure for numeric targets. Importantly, we
can observe from Eq. (36) that the measure based on the Kullback-Leibler
divergence of normal distributions is part of the family of dispersion-corrected
subgroup quality measures, as it takes into account both the centrality and
the spread of the target values (Boley et al., 2017).
When we consider subgroup lists having more than one subgroup, Eq. (36)
simply expands to:

L(Y | Θ̂d)− L(Y | X,M)− L(M) =

'
∑
ai∈S

niKL(Θ̂i; Θ̂d)−
∑
ai∈S

COMP(na, Dist)− L(M)

= SWKL(S)−
∑
ai∈S

COMP(na, Dist)− L(M),

where SWKL(S) is the measure for subgroup set quality that we proposed
in Section 4.3, and the other terms penalise the complexity of the subgroup
list. This demonstrates that the MDL-based objective for the optimal subgroup
corresponds to a subgroup set quality minus two terms for model complexity—
multiple=hypothesis testing.

8 The derivation for categorical and normal distributions is shown in Appendix C
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7.2 Relationship of MDL-optimal subgroup lists to Bayesian testing

We will now show how our MDL criterion relates to Bayesian and multiple hy-
pothesis testing. The Bayesian alternative to statistical testing is the Bayesian
factor presented in Section 3.2, which compares the best model by comparing
the likelihoods of the data given each model. Now imagine we are comparing
two models M1 and M2 based on their MDL quality as defined by Eq. (11):

L(D,M1)− L(D,M2) = − log

(
Pr(D,M1)

Pr(D,M2)

)
= − log

(
Pr(Y | X,M)

Pr(Y | Θ̂d)
× Pr(M1)

Pr(M2)

)

= − logK1,2 − log

(
Pr(M1)

Pr(M2)

)
,

where we use the Shannon-Fano code of Eq. (12) to transform code length
in bits L(· · · ) to probabilities Pr(· · · ), and K1,2 is the Bayes factor between
model 1 and 2 (as presented in Section 3.2). In practice, taking into account
Pr(M) (or L(M)) is equivalent to using the posterior distributions instead of
just the “Bayes” factor, and in our case, amounts to a penalty for multiple
hypothesis testing as described in Section 5.2. This is the general equivalence
between our formulation and Bayesian testing but now let us look at the spe-
cific case of adding only one subgroup at the end of the list, i.e., the greedy gain.

Greedy gain. Adding one subgroup to the list is of special interest to us because
it relates with both the greedy gain of our algorithm (Section 8.1) and to
Bayesian statistical testing against the dataset distribution Θ̂d.
Formally, the greedy gain of adding a subgroup to a model M , where M1 = M
is any subgroup list and M2 = M ⊕ s, i.e., M2 is M plus one more subgroup
s at the end of the list. Observe that the subgroups in M cover the dataset
exactly these as the same subgroups M ⊕ s and that the default rule is fixed.
Thus, this model comparison only depends on Θ̂d from M and Θ̂a from M⊕s:

L(D,M)− L(D,M ⊕ s) 'naKL(Θ̂a; Θ̂d)− COMP(na, Dist)

+ L(M)− L(M ⊕ s),
(37)

where we obtained the expression on WKL divergence again. Thus, the hypoth-
esis we are testing here is that the data non-covered by M is better described
by the dataset distribution Θ̂d or the subgroup distribution Θ̂a. This tells us
that adding one subgroup that minimises the MDL expression to the subgroup
list is equivalent to Bayesian testing Rouder et al. (2009). Specifically, the first
two terms are equivalent to a Bayesian proportions test (with a binary target),
a multinomial test (with a nominal target), or a t-test (with a numeric target
described by a normal). L(M) − L(M ⊕ s) accounts for multiple hypothesis
testing by penalising for all the possible subgroups that could be added to
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the model M , as explained in Section 5.1. Indeed, in the nominal case, the
first two terms are similar to one of the quality measures proposed by Song
et al. (2016)—we use the NML encoding and they use a Bayesian one—for
taking into account the uncertainty of the class distribution for nominal tar-
gets, assuming that the subgroup and dataset are different. However, they
do not consider our additional term for multiple hypothesis testing, which is
necessary to have a low number of false positives.

8 The SSD++ Algorithm

This section proposes SSD++, a heuristic algorithm to find good subgroup lists
based on the proposed MDL formulation of Section 5 and 6. Our proposed algo-
rithm combines the Separate-and-Conquer (SaC) (Fürnkranz, 1999) strategy
of iteratively adding the local best subgroup to the list with beam search for
candidate subgroup generation (for a short introduction on these algorithms,
please refer to Section 2.4). We use a double greedy approach because the
problem of finding the optimal subgroup list is NP-hard (Section 4.2.2), and
the algorithm can be extended to different types of target variables.
Further, in subgroup discovery, beam search was empirically shown to be com-
petitive in terms of quality compared to a complete search while offering a con-
siderable speed-up (Meeng and Knobbe, 2021). Greedy heuristic approaches
are a common practice in MDL-based pattern mining (Vreeken et al., 2011;
Proença and van Leeuwen, 2020) and rule-based learning (Fürnkranz et al.,
2012).
Lastly, our approach of greedy search and adding one subgroup at a time is
computationally interpretable to the user, as it adds at each iteration the lo-
cally best and most statistically significant subgroup found by beam search.

This section is divided as follows. First, Section 8.1 presents the greedy gain—
compression gain—of adding one subgroup to the list and its equivalence to
WKL-based SD. Then, Section 8.2 describes the SSD++ algorithm. Finally,
Section 8.3 shows the time and space complexity of SSD++.

8.1 Compression gain

To quantify the quality of annexing a subgroup s at the end (after all the
other subgroups and before the default rule) of model M , denoted M ⊕ s, we
employ the compression gain:

s = arg max
s∈∫

∆βL(D,M ⊕ s) = arg max
s∈∫

[
L(D,M)− L(D,M ⊕ s)

(ns)β

]
, β ∈ [0, 1]

(38)
where β weighs the normalisation level, and ∆βL(D,M ⊕s) should be greater
than zero for a decrease in the encoded length from L(D,M) to L(D,M ⊕ s),



38 Hugo M. Proença et al.

i.e., a favourable statistical test for adding a subgroup (Section 7.2). Consider-
ing the extremes, with β = 1 we have the normalised gain first introduced for
the classification setting by Proença and van Leeuwen (2020), and for β = 0
we have the absolute gain which is just the regular gain used in the greedy
search of previous MDL-based pattern mining (Vreeken et al., 2011).
Developing Eq. (38) further shows that the compression gain only depends on
the added subgroup s with description a, as in the specific case of a subgroup
list the default rule is fixed and it is the same for M and M ⊕ s:

∆βL(D,M ⊕ s) =
L(Y | X,M)− L(Y | X,M ⊕ s)

(na)β
+
L(M)− L(M ⊕ s)

(na)β

= ∆βL(Y | X,M ⊕ s) +∆βL(M ⊕ s),

' 1

(na)β

(
naKL(Θ̂s; Θ̂d)− COMP(na) +∆L(M ⊕ s)

)
(39)

where ∆βL(Y | X,M ⊕ s) and ∆βL(M ⊕ s) are the data and model com-
pression gain, respectively. The last expression shows the equivalence of the
compression gain to statistical testing with multiple-hypothesis as shown in
Eq. (37). COMP(na, Dist) is the uncertainty associated with the probability dis-
tribution for na points, which for categorical distributions is given by C(na, k)
and for normal is log na

Interpretation of hyperparameter β. The hyperparameter β represents a trade-
off between finding many subgroups that cover few instances or few subgroups
that cover many instances9. In the general form of a subgroup quality measure
of Eq. (3), β is just given by β = 1 − α. Later, we empirically show that the
normalised gain (β = 1) usually achieves a better MDL score than other β
values; this was already known for other measures from rule learning theory
(Fürnkranz et al., 2012). Nonetheless, the main objective of subgroup discov-
ery is to locally describe regions in the data that strongly deviate from a certain
target. Thus, the user can specify what she is looking for in the data: either a
more granular and detailed perspective (β close to one) or a more general and
high-level one (β close to zero). Note that, for comparison to other algorithms
we will always use the normalised gain (β = 1) except when explicitly stated.

8.2 SSD++ algorithm

We propose SSD++10, a heuristic algorithm with two main components: 1)
a SaC iterative loop that adds the best-found subgroup at the end of the
subgroup list; and 2) a beam search to find high-quality subgroups at each
SaC iteration based on the compression gain of Eq. 39.

9 For details on the empirical analysis of different β values, please refer to Appendix H
10 Our implementation can be found on: https://github.com/HMProenca/RuleList

https://github.com/HMProenca/RuleList
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More specifically, the greedy search algorithm starts from an empty list, with
just a default rule equal to the priors in the data, and adds subgroups ac-
cording to the well-known separate-and-conquer strategy (Fürnkranz et al.,
2012): 1) iteratively find and add the subgroup that gives the most consider-
able improvement in compression; 2) remove the data covered by that rule;
and 3) repeat steps 1-2 until compression cannot be improved. This implies
that we always add subgroups at the end of the list, but before the default rule.
Beam search is used for candidate generation at each iteration to find the best
candidate to add. In terms of the LeGo framework (Knobbe et al., 2008), our
work can be seen as first mining all the possible local patterns (subgroups)—
technically we could use beam-search only once, but using it at each iteration
results in better candidates—and then using the SaC algorithm to sequentially
add the best subgroup to a list.

Note that this algorithm extends that of Proença et al. (2020) for univariate
numeric targets to three extra target types—univariate and multivariate nomi-
nal, and multivariate numeric—with the added normalisation hyperparameter
β.

8.2.1 Algorithm description

Algorithm 1 presents SSD++. The algorithm starts by taking as input a
dataset D and the beam search parameters, namely the number of cut points
ncut, the width of the beam wb, and the maximum depth of search dmax. It
initialises the rule list with the default rule, based on the dataset empirical
distribution (Ln 1). Then, while the beam search algorithm returns subgroups
that improve compression (Ln 3), it keeps iterating over two steps: 1) finding
the best subgroup from all candidates generated in the beam search (Ln 4);
and 2) adding that subgroup to the end of the model, i.e., after all the ex-
isting subgroups in the model (Ln 5). The beam search (explained further in
the next paragraph) returns the best subgroup on the data not covered by
any subgroup already in model M . When no subgroup improves compression
(non-positive gain), the loop stops and returns the subgroup list. Beam search
is used at each iteration to generate the best candidates at each SaC iteration,
instead of only once at the beginning, as it could yield local optima and get
stuck on the top-k subgroups.

Beam search. Given a beam width wb and maximum search depth dmax it con-
sists of: 1) find all items, i.e., all conditioned variables such as x1 < 5 (see next
paragraph for the numeric discretisation with cut points) or x2 = category,
and add the best wb items according to compression gain (Eq. (39)) as sub-
groups of size 1 to the beam; 2) refine all subgroups in the beam with all
items and add the best wb to a new empty beam; 3) repeat 2 and 3 until the
maximum depth dmax of the beam is reached and return the best subgroup—
according to the compression score—found in all iterations.
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Numeric discretisation. Suppose a numeric variable Xj , and a number of cut
points ncut. The items generated from this numeric variable are all valid sub-
sets (they must cover at least one instance) given by equal frequency dis-
cretisation with open and closed intervals for ncut cut points. Open inter-
vals require one operator (≥ or ≤), while closed intervals require two (≥ and
≤). As an example, in the case of a generic variable Xj and ncut = 2, with
cut point1 = 10 and cut point2 = 20 it generates four items with one opera-
tor, i.e., items1op = { xj ≥ 10, xj ≤ 10,xj ≥ 20, xj ≤ 20}, and one item with
two operators, i.e., items2op = {10 ≤ xj ≤ 20}.

Algorithm 1 SSD++ algorithm

Input: Dataset D, number of cut points ncut, beam width wb, depth max. dmax and
normalisation β

Output: Subgroup list S
1: M ← [Θd(Y )]
2: subgroup← BeamSearch(M,D,wb, ncut, dmax)
3: while ∆βL(D,M ⊕ subgroup) > 0 do
4: subgroup← BeamSearch(M,D,wb, ncut, dmax)
5: M ←M ⊕ subgroup
6: return S ∈M

8.3 Time and Space Complexity

In this section, we analyse the time and space complexity of SSD++ as given
in Algorithm 1 in Section 8.3.1 and 8.3.2, respectively.

8.3.1 Time Complexity

The algorithm can be divided into three parts: 1) preprocessing of the data;
2) the Separate and Conquer (SaC) algorithm; and 3) the beam search. In
addition, there are different complexities depending on the target type, as
each statistic requires different computations.

1) Preprocessing phase. In the preprocessing phase, all the coverage bitsets of
the items are generated, i.e., the indexes of the instances covered by each item
generated from numerical and nominal variables. The set of all items is ζ and
its size |ζ|. Thus, we go over the data a maximum of |ζ| times, obtaining a
time complexity of O(|ζ|n), and the results are stored in a dictionary for O(1)
access. Also, some constants are cached for a fixed amount the first time they
are computed, such as the universal code of integers LN(i), and Γ (i) for the
numeric target case, and C(i) in the categorical case.

2) SaC phase. For the SaC phase, it is clear that the algorithm runs the beam
search |S| times and will thus multiply the time complexity of the beam search
by |S|.
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3) Beam search phase. For the last dmax − 1 iterations of the loop, each of
wb candidates in the beam is refined with all |ζ| items, which gives a time
complexity by itself of O(dmaxwb|ζ|). Then, for each refinement, the algorithm
computes its coverage, statistics, and score, where the last two depend on the
number and type of target.
The coverage of the refinement is the logical conjunction of two bitsets, i.e.,
the bitset of the candidate bcand and that of the item bitem. The computation
of this new coverage has a time complexity of O(|bcand| + |bitem|), which in
a worst-case equals a run over the dataset O(n + n) = O(n). Thus the time
complexity of the algorithm is given by

O
(
|S|dmaxwb|ζ|stats

)
,

where stats is the time complexity associated with computing the statistics for
one candidate. Now, we will analyse the specific stats complexity depending
on the type of target.

Nominal target variables. The statistics for categorical distributions require
the computation of the usage for each class for each target of each subgroup
rule and the new default rule. Assuming a maximum number of classes k (for
all target variables) and t target variables, then the worst case for the coverage
gives O(tnk) from which the likelihood can be directly computed.
The nominal score requires the computation of the data and model encod-
ing, from which the data encoding dominates. The data encoding entails the
computation of the NML complexity and likelihood for each refinement. In
general, the values of the NML complexity are just computed once and then
cached; thus, in a worst-case where one requires to compute n values for
C(ni),∀ni=1,...,n. Using the approximation of Mononen and Myllymäki (2008)
for its computation, with O(

√
10ni + k), gives a worst-case complexity of

O(tn(
√
n + k)). This does not depend on the parameters of the beam, as

the lookup of these values is O(1). The likelihood generally dominates over
this term as it is computed for each refinement.
Thus the total time complexity for nominal targets is given by:

O
(
|S|dmaxwb|ζ|tnk + tn(

√
n+ k)

)
Numeric target variables. The statistics for normal distributions require the
computation of the mean and variance (or residual sum of squares) for the
refined subgroup and for the default rule. The mean can be computed in O(n)
and given its value the variance can also be computed in O(n). Thus, for all
the targets, one obtains O(tn).
The numeric score requires the computation of the data and model encoding,
from which the data encoding dominates. The data encoding entails calcu-
lating the gamma function and the direct use of the statistics. Similar to the
NML complexity, we compute the values of the gamma function as needed and
cache them afterwards. In general, the computation of the gamma function is
dominated by the other terms as we only compute it at most n times.
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Thus the total time complexity for numeric targets is given by:

O
(
|S|dmaxwb|ζ|tn

)
.

Notice that this represents a worst-case scenario. In practice, the direct use of
bitsets to compute the class usages in the nominal case makes it faster than
its numeric counterpart for the same dataset size.

8.3.2 Space Complexity

The main memory consumption resources of the algorithm are: 1) the storage
of items ζ; 2) the beam; and 3) the cached constants. The item storage requires
at most the storage of |ζ| bitsets, with each bitset taking O(n), thus it totals
O(|ζ|n). The beam saves wb bitsets at a time, thus having a space complexity
of O(wbn). The cached values make up a total of n values being dominated by
the items or beam part. Thus, depending on which part dominates, the space
complexity of the algorithm is

O(wbn+ |ζ|n).

9 Empirical evaluation

In this section, we will empirically validate our proposed problem formulation
and the SSD++11 algorithm. To do this, we will test how varying the hyper-
parameters of SSD++ affects the subgroups found, and then we will compare
SSD++ against state-of-the-art algorithms in subgroup set discovery.

This section is divided as follows. In Section 9.1 we evaluate the effect of
changing the different hyperparameters of SSD++. Then, in Section 9.2 we
present the setup for validating our approach based on algorithms compared
against, datasets, and measures used to evaluate them. After that, in Sec-
tion 9.3, the results for univariate and multivariate nominal targets compared
with state-of-the-art algorithms are presented. Then, in Section 9.4 the results
for univariate and multivariate numeric targets compared with state-of-the-art
algorithms are shown. After that, in Section 9.5 the statistical robustness of
our formulation and algorithm are tested based on the generalisation to unseen
data. Finally, in Section 9.6 the runtimes of the algorithms are compared.

9.1 Influence of SSD++ hyperparameters

Here we study the effect of SSD++ hyperparameters on the discovered sub-
group lists. To not overfit our hyperparameters to the datasets and for this

11 Our implementation can be found on: https://github.com/HMProenca/RuleList;
and for replication of the experiments, please refer to https://github.com/HMProenca/

RobustSubgroupDiscovery

https://github.com/HMProenca/RuleList
https://github.com/HMProenca/RobustSubgroupDiscovery
https://github.com/HMProenca/RobustSubgroupDiscovery
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reason obtain a better performance than other methods, the values of SSD++
hyperparameters for the remaining of the experiments (besides this section)
are fixed at the standard values of the DSSD implementation for the beam
search, i.e., beam width wb = 100, number of cut points ncut = 5, and maxi-
mum search depth dmax = 5, and to the compression gain normalisation term
β = 1 (normalised gain). These values are assumed to be enough to achieve
convergence and to obtain good subgroup lists and are thus taken as the stan-
dard values of SSD++.

Now, to evaluate hyperparameter influence, we vary one hyperparameter value
at a time while others remain fixed at their standard values. The results of
varying the compression gain normalisation hyperparameter β can be seen in
Appendix H; the results of varying the beam search hyperparameters wb, ncut,
and dmax can be found in Appendix I.

Normalisation term β. The results are evaluated in terms of compression ratio,
SWKL, and the number of rules. For compression gain, the results (as shown
in Appendix H) are similar for a small number of samples, but β = 1 and 0.5
obtain better results for larger datasets. In terms of SWKL, normalised gain
(β = 1) is better. On the other hand, in terms of the number of rules β = 1
can obtain one order of magnitude more rules than the others, especially for
larger datasets.

Beam search hyperparameters wb, dmax, and ncut. The results are evaluated in
terms of compression ratio and the average number of conditions per subgroup
(for dmax). In general, increasing any of the three values results in better
models according to relative compression. It is also interesting to note that for
maximum depths above 5 it is rare to have an average number of conditions
above 4, backing up our decision for the standard value dmax = 5.

9.2 Setup of the subgroup quality performance comparisons

In this section, we evaluate the quality of our proposed method by comparing
it to the state-of-the-art approaches in subgroup set discovery, which may
vary depending on the type of target variable(s). The comparison takes three
dimensions: 1) the algorithms used to compare against; 2) measures used to
evaluate the quality of the subgroups found by each algorithm; 3) the datasets
in which the algorithms are evaluated. We now discuss the details of each
dimension.

9.2.1 Algorithms

The algorithms we compared and their relevant characteristic are listed in
Table 2. A short description of each is as follows:
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1. top-k12 - standard subgroup discovery miner used as a benchmark.
2. seq-cover12 - sequential covering as implemented in the DSSD implemen-

tation.
3. CN2-SD13 - the classical sequential covering subgroup discovery algorithm,

which is only implemented for nominal targets, and only removes the ex-
amples of the class of interest already covered (not all examples covered,
as seq-cover does).

4. Diverse Subgroup Set Discovery (DSSD)12 - diverse beam search for diverse
sets of subgroups (van Leeuwen and Knobbe, 2012).

5. Monte Carlo Tree Search for Data Mining (MCTS4DM) - an approach to
improve on beam search to find better subgroups without getting stuck in
local optima (Bosc et al., 2018).

6. FSSD - a sequential approach for subgroup set discovery that defines a set
as a disjunction of subgroups (Belfodil et al., 2019).

As can be seen in Table 2 most algorithms can only be applied to single-
target binary problems, and besides SSD++ only top-k, seq-cover and CN2-SD
support the use of Sum of Weighted Kullback-Leibler (SWKL) divergence to
measure the quality of the found subgroup set. Thus we only compare against
seq-cover and CN2-SD, algorithms that output a subgroup list and can be
applied to many target types, and with top-k as a reference of a non-diverse
subgroup discovery algorithm. The algorithms that output sets do not have a
stopping criterion or global formulation, and underperform in terms of SWKL;
thus those comparisons are relegated to Appendix F. As an example, DSSD
can indeed be applied to all types of target variables, but the fact that it uses
weighted sequential covering makes it unsuitable to use the SWKL, making it
unfairly underperform and unsuitable for a fair comparison (as shown in the
Appendix). Also, note that we do not compare with machine learning algo-
rithms that generate rules for classification or regression, such as RIPPER or
CART, as the rules generated aim at making the best prediction possible and
not the highest difference from the dataset distribution, as shown theoretically
in Appendix D.

Quality measures. As the quality of a set is measured using the SWKL, the
most appropriate measure to use is the Weighted Kullback-Leibler (WKL) for
the algorithms that support it. CN2-SD supports entropy which is related to
WKL. FSSD only supports WRAcc at the moment. Note that for the case of
numeric targets, except SSD++, all use a WKL that only takes into account
the mean, given by WKLµ(s) = ns/σ̂d(µ̂d− µ̂s)2, in contrast to the deviation-
aware measure of SSD++ in Eq. 8.

Hyperparameters. Most algorithms use beam search, thus only have three
main hyperparameters: the maximum depth of search dmax; the width of the
beam wb; and the number of cut points to discretise numeric explanatory
variables ncut. The larger the values, the better the performance, but the slower

12 top-k, seq-cover, and DSSD are available in the implementation of the DSSD algorithm
http://www.patternsthatmatter.org/software.php#dssd/
13 Available in the Orange data mining toolkit https://orangedatamining.com/

http://www.patternsthatmatter.org/software.php#dssd/
https://orangedatamining.com/
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Table 2 Algorithms included in the comparison and their functionalities. Qual-
ity represents the quality measure used to evaluate one single subgroup, search
is the type of search algorithm supported, swkl shows if it supports SWKL to
measure the quality of a subgroup set, output tells if the subgroups discovered
form a list or a set, and ‘3’ and ‘−’ represent if that type of target variable(s)
is supported. MCTS stands for Monte Carlo Tree Search.

nominal numeric

Algorithm quality search output swkl bin. nom. multi single multi

SSD++ WKL beam list 3 3 3 3 3 3
top-k WKLµa beam set 3 3 3 3 3 3
seq-cover WKLµa beam list 3 3 3 3 3 3
CN2-SD entropy beam list 3 3 3 - - -
DSSD WKLµa beam set - 3 3 3 3 3
MCTS4DM WKLµa MCTS set - 3 - - - -
FSSD WRAcc DFS list 3 3 - - - -

a The algorithms only support WKLµ for numeric targets (Eq. (7)), i.e., a Weighted
Kullback-Leibler divergency that only takes into account the mean, contrary to the one
used by SSD++ that also uses the variance (Eq. (8)). For the nominal target case there
is only one WKL (the different WKL measures are explained in Section 2.2.1).

the algorithms become, as time complexity is linear to each of them. To be fair
and not over-search the hyperparameters, we selected the default values of the
DSSD and seq-cover implementation for all beam-search algorithms: dmax = 5,
wb = 100, ncut = 5. For the case of MCTS4DM, which requires a larger set
of hyperparameters, only the number of iterations is set, niter = 50 000, to
ensure good convergence, and the rest were set as default. FSSD only requires
the maximum depth, which was set at 5.

9.2.2 Measures

To compare the quality of the subgroup sets obtained by different algorithms,
we use three different measures. The first is our proposal to measure the overall
quality of an ordered set of subgroups, the Sum of Weighted Kullback-Leibler
(SWKL), as defined in Eq. (14). The other two are the number of subgroups
|S| and the average number of conditions per subgroup |a|, two commonly
used measures for the interpretability/complexity of a set of rules. These two
measures follow the law of parsimony and assume that fewer subgroups with
fewer conditions are easier to understand by humans, which can be an invalid
assumption in some situations. Nonetheless, it is widely used and its simple
understanding typically makes for a good proxy (Doshi-Velez and Kim, 2018).

Generalisation. In machine learning, algorithms are evaluated based on their
generalisation to unseen data (e.g., cross-validation). This is not common prac-
tice in subgroup discovery and other algorithm implementations cannot run
on unseen data. For this reason, we test against other algorithms in the same
dataset. In terms of generalisation we compare SSD++ in its proposed format,
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versus SSD++ with KL and WKL divergence as quality measures instead of
the greedy MDL gain (in Ln 3 of the SSD++), i.e., our formulation with-
out distribution and model complexity, COMP(na) and L(M), respectively, in
Eq (39).

9.2.3 Datasets

For a thorough analysis we use a total of 54 datasets—10-univariate binary;
10 univariate nominal; 9 multivariate nominal; 15 univariate numeric; and 9
multivariate numeric—that are listed in Tables 7 and 8 of Appendix E. The
datasets are commonly used benchmarks of machine learning and subgroup
discovery, which are publicly available from the UCI14, Keel15, and MULAN16

repositories. The datasets were selected to be the most varied possible. In the
case of the nominal target datasets in Table 7, the number of targets ranging
from 1 to 374, the classes from 2 to 28, the samples from 150 to 45 222, and
the variables from 3 to 1 186. In the case of the numeric target datasets in
Table 8, the number of targets ranging from 1 to 16, the samples from 154 to
22 784. Note that we used multi-label datasets instead of multi-nominal as the
latter are not widely available.

9.3 Nominal target results

The results obtained on binary, nominal, and multi-label datasets with se-
quential subgroup set miners can be seen in Table 3 and in a graphical repre-
sentation for the SWKL measure in Figure 6, while the results for algorithms
that output sets can be found in Table 9 in Appendix F. Overall, we can see
that our algorithm gets 14 out of 29 best results, compared with seq-cover in
second place with 13 best results. In terms of SWKL per type of data, SSD++
achieves the smallest ranking for binary, seq-cover for nominal, and both are
tied for multi-nominal. This small difference in the results between SSD++
and seq-cover is important for two reasons. First, it validates SWKL, showing
that seq-cover is already implicitly maximising it without knowing it. Second,
it shows that SSD++ can obtain on par or slightly better results than other
established approaches. Our non-diverse baseline, top-k, shows that covering
different dataset regions is important to maximise SWKL.
Regarding the number of found subgroups, we can see that in most cases, all
algorithms are in the same order of magnitude, except when SSD++ obtains
many more subgroups (for adult, nursery, kr-vs-k, and mediamill). These re-
sults can be explained by the use of normalised gain (β = 1) by SSD++,
together with the fact that these datasets have a large number of samples,
few variables, or a large number of categories. First, let us recall that the
normalised compression gain of Eq. (38) is composed of a data covering part

14 https://archive.ics.uci.edu/ml/
15 http://www.keel.es/
16 http://mulan.sourceforge.net/datasets.html

https://archive.ics.uci.edu/ml/
http://www.keel.es/
http://mulan.sourceforge.net/datasets.html
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and a model penalisation part and that both are normalised by the number
of instances covered, which gives an advantage to subgroups that cover less
data but are well-covered (only one category, or few categories). When the
datasets are larger and the number of variables is reasonably small, like adult
with 45222 examples and 14 variables, there is a larger chance of finding more
statistically “significant” subgroups, as there can be more regions where sub-
groups only (or almost only) cover one class, and the penalisation of the model
encoding is small as there are not many variables. On the other hand, sub-
groups covering more data can more easily have a larger entropy in the class
label distribution. For example, kr-vs-k, which is a reasonably large dataset

1 2 3 4

SSD++
seq-cover CN2-SD

top-k

(a) Single-binary targets

1 2 3 4

seq-cover
SSD++ CN2-SD

top-k

(b) Single-nominal target.

1 2 3

seq-cover
SSD++

top-k

(c) Multi-label targets

Fig. 6 Comparison of SSD++ against other algorithms for numeric targets
datasets with the Bonferroni-Dunn test (Demšar, 2006) of the SWKL measure.
The values shown represent the average ranking of the respective algorithms.
Ranks outside the marked interval are significantly different—from a frequen-
tist perspective—(p < 0.05) from SSD++. Note that these graphs were added
to help visualisation and the authors do not recommend inferring from the
“significance” obtained. Moreover, the lack of significance was expected given
the small number of datasets per target type
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Table 3 Nominal target results. This includes single-binary, single-nominal,
and multi-label, separated by horizontal lines in the table (top to bottom).
The properties of the datasets can be seen in Table 7, and are ordered in
ascending number of: 1) target variables; 2) number of classes; and 3) number
of samples. The evaluation measures are {quality of the subgroup set swkl;
number of subgroups |S|; and average number of conditions |a|}. ‘avg. rank’
stands for the average ranking for the respective target variable type, where
1 represents the best rank. Note that CN2-SD does not work for multi-label
case and thus the empty values −.

top-k seq-cover CN2-SD SSD++

datasets swkl |S|a |a| swkl |S| |a| swkl |S| |a| swkl |S| |a|
sonar 0.24 2 4 0.960.960.96 9 2 0.67 11 2 0.43 2 3

haberman 0.08 1 5 0.390.390.39 20 4 0.18 12 4 0.04 1 1

breastCancer 0.37 6 2 0.80 13 2 0.80 11 2 0.820.820.82 6 2

australian 0.26 5 3 0.690.690.69 13 3 0.54 24 3 0.55 5 2

tictactoe 0.50 16 3 0.73 18 3 0.21 21 3 0.870.870.87 16 2

german 0.08 4 5 0.30 22 4 0.420.420.42 48 4 0.14 4 3

chess 0.25 17 3 0.87 13 2 0.68 51 3 0.970.970.97 17 2

mushrooms 0.49 12 4 0.92 11 1 1.001.001.00 36 1 1.001.001.00 12 1

magic 0.16 69 5 0.38 35 4 0.42 616 3 0.470.470.47 69 4

adult 0.11 103 5 0.27 79 4 0.430.430.43 1230 4 0.31 103 4

avg. rank 3.8 1.9 3.8 2.1 2.4 2.2 2.2 3.8 2.5 1.91.91.9 1.9 1.5

iris 0.53 4 2 1.451.451.45 5 2 0.96 4 2 1.44 4 1

balance 0.21 9 3 0.800.800.80 19 3 0.18 3 3 0.69 9 3

CMC 0.07 7 3 0.300.300.30 38 4 0.27 42 3 0.25 7 2

page-blocks 0.19 21 5 0.45 26 2 0.44 12 4 0.490.490.49 21 3

nursery 0.92 81 2 1.36 22 3 0.87 8 4 1.631.631.63 81 3

automobile 0.38 5 4 1.611.611.61 11 3 1.54 7 4 1.25 5 2

glass 1.01 5 2 1.55 5 2 2.142.142.14 6 2 1.92 5 1

dermatology 0.54 9 2 2.282.282.28 9 2 2.12 7 3 2.11 9 2

kr-vs-k 0.45 351 5 0.75 43 4 0.20 61 5 1.831.831.83 351 3

abalone 0.26 16 5 0.62 29 4 0.60 49 3 0.740.740.74 16 2

avg. rank 3.7 2.4 3.0 1.61.61.6 3.0 2.2 2.8 2.3 3.4 1.9 2.4 1.4

emotions 0.71 17 5 1.93 22 4 − − − 2.682.682.68 17 3

scene 0.39 49 5 1.85 33 4 − − − 3.053.053.05 49 4

birds 0.49 8 5 2.022.022.02 20 4 − − − 1.57 8 3

flags 0.44 5 4 2.402.402.40 17 4 − − − 1.21 5 2

yeast 0.49 35 5 1.83 55 5 − − − 2.202.202.20 35 5

genbase 0.88 15 2 5.51 12 1 − − − 5.825.825.82 15 1

mediamill 0.43 131 5 1.44 60 5 − − − 2.962.962.96 131 5

CAL500 1.46 1 5 16.9116.9116.91 36 4 − − − 1.24 1 5

corel5k 5.81 144b 3 5.395.395.39 144 4 − − − 0.00 0 0

avg. rank 2.7 1.9 2.7 1.71.71.7 2.3 1.9 − 1.71.71.7 1.8 1.4

a k was selected as the number of subgroups found by SSD++.
b Seq-cover number of subgroups was used as a reference for this case.

with 28 056 and with 18 class labels, a subgroup that only covers one class
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label, as opposed to covering many class labels, will have a higher chance of
being chosen. The number of subgroups found can be large, but it was shown
in a classification setting that they generalise well (Proença and van Leeuwen,
2020). It is interesting to note that in the case of corel-5k, SSD++ does not
find any “significant” subgroup to add.
Regarding the number of conditions per subgroup, the two best-performing
algorithms in terms of SWKL, SSD++, and seq-cover, tend to have a similar
and lower number of conditions than the other algorithms. As Top-k only
covers the same region, it tends to be close to the maximum depth of 5.

9.4 Numeric target results

The results for the single-target and multi-target numeric datasets can be seen
in Table 4 and in a graphical representation for the SWKL measure in Figure 7.
In general, SSD++ obtains the best results for 23 out of 25 datasets. This is
expected as SWKL and SSD++ take into account the dispersion/deviation
of the subgroup target while top-k and seq-cover do not. Moreover, the nor-
malised standard deviation of the first subgroup found supports this claim, as
SSD++ tends to find subgroups with smaller deviations for 10 out of 15 cases.

1 2 3

SSD++
seq-cover

top-k

(a) Single-numeric targets

1 2 3

SSD++
seq-cover

top-k

(b) Multi-numeric targets

Fig. 7 Comparison of SSD++ against the rest with the Bonferroni-Dunn test
(Demšar, 2006) for numeric targets for the SWKL measure. The values repre-
sent the average ranking of the respective algorithms and all algorithm with
ranks outside the marked interval are significantly different—from a frequen-
tist perspective—(p < 0.05) from the SSD++. Note that this graphs were
added to help visualisation and the authors do not recommend to infer from
the “significance” obtained. Moreover, the lack of significance was expected
given the small number of datasets per target type
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Table 4 Numeric target results. This includes single-numeric and multi-
numeric, separated by a horizontal line in the table (top to bottom). The
properties of the datasets can be seen in Table 8, and are ordered in ascending
number of: 1) target variables; 2) number of classes; and 3) number of sam-
ples. The evaluation measures are {quality of the subgroup set swkl; number of
subgroups |S|; normalised standard deviation of the first subgroup σ̃t1; and av-
erage number of conditions |a|}. ‘avg. rank’ stands for the average ranking for
the respective target variable type, where 1 represents the best ranking. Note
that σ̃t1 is not shown for the multi-numeric case as it is not easy to understand.

top-k seq-cover SSD++

datasets swkl σ̃t1 |S|a |a| swkl σ̃t1 |S| |a| swkl σ̃t1 |S| |a|
baseball 0.26 0.82 7 4 1.40 1.22 26 4 1.861.861.86 0.01 7 2

autoMPG8 0.43 0.54 8 4 1.45 1.85 22 4 1.571.571.57 0.18 8 2

dee 0.46 0.50 9 4 1.29 2.01 20 4 1.351.351.35 0.32 9 2

ele-1 0.29 1.06 8 4 1.14 0.94 22 4 1.221.221.22 1.24 8 2

forestFires 0.61 6.84 22 4 2.73 0.15 57 4 3.913.913.91 7.57 22 3

concrete 0.28 0.65 18 4 1.27 1.53 35 4 1.311.311.31 0.21 18 3

treasury 0.43 0.68 31 4 2.74 1.46 21 4 3.853.853.85 0.01 31 2

wizmir 0.70 0.31 22 4 2.15 3.22 26 4 2.722.722.72 0.15 22 2

abalone 0.23 0.59 26 4 0.47 1.68 126 5 0.710.710.71 1.32 26 3

puma32h 0.55 0.59 48 4 1.39 1.68 70 5 1.441.441.44 0.29 48 3

ailerons 0.24 1.23 98 4 1.04 0.82 105 4 1.441.441.44 0.98 98 4

elevators 0.23 1.44 158 4 0.83 0.69 150 5 1.311.311.31 1.40 158 4

bikesharing 0.26 1.09 136 4 1.24 0.92 91 4 1.701.701.70 0.02 136 4

california 0.19 0.90 174 4 0.69 1.11 116 5 1.141.141.14 0.00 174 4

house 0.19 1.59 269 4 0.91 0.63 143 5 2.022.022.02 2.83 269 5

avg. rank 3.0 2.1 1.8 2.0 2.0 2.3 2.3 2.7 1.01.01.0 1.6 1.8 1.3

edm 0.47 − 5 5 0.81 − 9 2 1.881.881.88 − 5 2

enb 2.73 − 41 2 3.54 − 19 2 8.718.718.71 − 41 2

slump 1.38 − 4 5 2.742.742.74 − 17 4 2.57 − 4 3

sf1 0.16 − 3 5 2.062.062.06 − 47 4 1.24 − 3 3

sf2 0.86 − 2 5 2.29 − 18 4 0.910.910.91 − 2 4

jura 0.47 − 15 5 2.38 − 28 4 3.523.523.52 − 15 3

osales 2.17 − 45 4 18.09 − 48 3 26.4426.4426.44 − 45 3

oes97 6.55 − 16 3 30.79 − 19 4 34.3634.3634.36 − 16 4

oes10 6.56 − 23 3 29.11 − 27 4 40.6540.6540.65 − 23 3

wq 0.87 − 62 5 2.06 − 47 4 11.1411.1411.14 − 62 4

avg. rank 3.0 − 1.7 2.4 1.7 − 2.6 1.8 1.31.31.3 − 1.7 1.8

a k was selected as the number of subgroups found by SSD++.

Comparing SWKL results for top-k with seq-cover and SSD++ shows that
irrespective of dispersion-aware (SSD++) or not (seq-cover), covering different
regions of the data increases the quality of the list in terms of SWKL, validating
the use of our measure. It should be noted that both top-k and seq-cover could,
in practice, support taking into account the deviation, but that would require
several non-trivial modifications in their source code.
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Regarding the number of subgroups, seq-cover tends to have more rules than
SSD++ for datasets with less than 5 000 examples, while SSD++ tends to
have more for a larger number of examples. This makes sense as there is more
evidence to identify possible significant subgroups.

Regarding the number of antecedents, SSD++ tends to have, on average, one
condition fewer than seq-cover for single-target and a similar number for the
multi-target case.

9.5 Statistical robustness and generalisation

The main results of the statistical robustness analysis for single-binary, -
nominal, and -numeric targets are shown in Figures 8a and 8b, while the com-
plete results can be seen in Tables 10 and 11 of Appendix G. Only single-target
datasets are used for an easier interpretation of the results. Our proposed
formulations—MDLβ=1 (normalised gain) and MDLβ=0 (absolute gain)—are
compared against KL and WKL divergence, i.e., their counterparts, that do
not take into account distribution complexity and multiple-hypothesis testing
in Eq. (39). These counterpart ‘non-testing’ versions of SSD++ are similar, in
the essential parts, to the state-of-the-art seq-cover algorithm. To compare the
different quality measures used, we use the difference between log loss in train
and test sets17 with a 50%–50% train–test split. The log loss measures how
well the estimated probabilities model the distribution present in the data (a
lower value is better), so that the difference between log losses measures how
well the model generalises to unseen data.

At first glance, the two MDL-based approaches achieve the best generalisation
(difference of log losses), lower log loss on the test set, and the smallest number
of subgroups in 86%, 77%, and 100% of the cases, respectively, when compared
to their ‘non-testing’ counterparts.

It is interesting to observe that, on the one hand, MDLβ=0 obtains the low-
est difference of log losses in 69% of the cases. On the other hand, however,
MDLβ=1 has the best test set log loss overall, obtaining the best value 54% of
the cases. This difference is expected, as MDLβ=0 produces more conservative
subgroup lists in terms of log loss in the train set, which is reflected by a lower
generalisation error. Also, while MDLβ=1 has the best test set performance,
its counterpart (KL) has the worst, showing that our MDL formulation adds
statistical robustness to well-known existing measures.

Further, we observe test log losses with large or infinite values in the numeric
target case. This happens when one subgroup with a small variance sees a
point far from its mean in the test set. For the case of MDLβ=1 and WKLµ,σ,
the infinite values appear in few (one to two) subgroups in their lists, not
making it a problematic behaviour for description; however, for KLµ,σ this
happens for most subgroups found.

17 For the formal definition of the difference between log loss in train and test, please refer
to Eq. (67) and (68) in Appendix G.
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Fig. 8 Statistical robustness analysis for nominal and numeric target datasets.
The figures show how subgroup lists obtained with the proposed approach—
SSD++ with normalised and absolute gain, i.e., MDLβ=1 and MDLβ=0—
generalise to unseen data, tested with a 50%–50% train–test split. As baselines,
we used SSD++ with KL and WKL divergence as quality measures, i.e., the
same as our approach but without accounting for multiple hypothesis testing
and distribution complexity (that is, without L(M) and COMP(na) in Eq. (39)).
The properties of the datasets can be seen in Table 7, and are ordered in as-
cending number of: 1) number of classes (if nominal); and 2) number of sam-
ples. The evaluation measure is |LogLossRatio(train)−LogLossRatio(test)|,
where LogLossRatio(*) is the ratio between the log loss measure of the ob-
tained subgroup list and the log loss of the dataset marginal distribution
(dataset rule). The lower the value of the measure, the better, as this in-
dicates that the model generalises well and does not overfit on the training
set. The complete results can be seen in Tables 10 and 11 in Appendix G

9.6 Runtime comparison

Runtimes of all algorithms compared, i.e., top-k, seq-cover, CN2-SD, and
SSD++ are shown in Figures 9a and 9b. In general, the runtime increases
with the number of samples in the dataset for a fixed data type. For the
nominal datasets, there is an increase in runtime with the number of target
variables, which does not seem to happen for numeric targets. This is be-
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cause the number of subgroups found for multivariate numeric targets was, in
general, smaller.
Comparing the algorithms against each other, as expected, top-k was the
fastest algorithm, as it only needs to search for the subgroups once, while
the others need multiple iterations.
For nominal targets, CN2-SD was the slowest algorithm, which stems from
entropy as a quality measure—experiments with WRAcc proved to be much
faster. On the other hand, SSD++ seems to perform on par with seq-cover
and is often even faster.
For numeric targets, SSD++ was one order of magnitude slower than seq-cover.
One possible reason is the extra time to compute the variance, although this
does not explain the difference between both algorithms. A further study of
the numeric implementation could make for an interesting research direction.
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Fig. 9 Runtime in seconds for all algorithms for each dataset. The black ver-
tical line divides the type of datasets, i.e., from left to right: univariate binary,
nominal, and multi-label for nominal targets, and univariate and multivariate
for numeric
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10 Case study: associations between socioeconomic background
and university grades of Colombia engineering students

In this section, we apply SSD++ to a real use case to assess its usefulness
and limitations. To this end, we aim to understanding how socioeconomic
factors affect the grades of engineering university students in Colombia on their
national exams. The dataset used to study this is fully described by Delahoz-
Dominguez et al. (2020). It contains socioeconomic variables and grades in
national exams done at the high school and university level for engineering
students in Colombia. For our specific case study, we have selected two of their
exam grades at the university for two reasons. First, the relationship between
socioeconomic variables and university grades is weaker (than for high school
grades), thus more interesting to see if we can find relations, and second, only
having two exam grades improves the visualisation of the results.

Dataset. The dataset used is composed of 12 412 samples, 22 explanatory
variables, and 2 numeric target variables. The explanatory variables refer to
the socioeconomic background of the students at the time of high school, and
they are made of variables such as parent’ level of education, the household
income, which type of high school they attended, the utilities available at
home (e.g., internet and television), and their neighbourhood stratum18. The
numeric targets represent their grades, from 0% to 100%, in two national
university-level exams, namely quantitative reasoning and English.
An additional reason for selecting this dataset is that it violates two of our
model assumptions: 1) the target variables values are truncated between 0
and 100, thus violating the use of a continuous normal distribution to describe
them; and 2) the target variables are not independent, as suggested by a
correlation of 53%. If our approach is shown to work despite these violations,
we may consider this is a good result.

10.1 Analysis of the subgroups obtained with SSD++

The first four subgroups with absolute (β = 0) and normalised (β = 1) gain
can be seen in Figures 11a and 11b, respectively. The distributions of the first
two subgroups for both gains can be seen in Figures 10a, 10b, 10c, and 10d. The
two extreme gains were used to show the interest (from a user perspective) of
using different gains depending on the goal of the data exploration, i.e., coarse
versus fine-grained perspective.

Comparison of absolute and normalised gain. Overall, with absolute and nor-
malised gain, our method finds 7 and 34 subgroups that cover a total of 84%

18 Stratum is a classification system unique to Colombia, where districts are
ranked based on their affluence level from 1 to 6, where 1 is the lowest level
https://www.dane.gov.co/index.php/servicios-al-ciudadano/servicios-informacion/

estratificacion-socioeconomica (Accessed on 29 June. 2022).

https://www.dane.gov.co/index.php/servicios-al-ciudadano/servicios-informacion/estratificacion-socioeconomica
https://www.dane.gov.co/index.php/servicios-al-ciudadano/servicios-informacion/estratificacion-socioeconomica
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and 92% of the data, respectively. Looking at Figures 10a, 10b, 10c, and 10d,
it can be seen that normalised gain favours smaller and compact subgroups
that deviate more from the dataset distribution, while absolute gain favours
larger subgroups that deviate less from the dataset distribution. These conclu-
sions can be verified by noting that normalised gain subgroups tend to have
a smaller standard deviation, between 5% and 9%, while absolute gain has
values in the same order of magnitude of the dataset distribution, i.e., around
23%.

Interpretation of the results. Both normalised and absolute gain results show
that having a ‘better’ socioeconomic background is associated with higher
average grades in both exams, and the contrary is associated with lower grades.
This is clearer in the absolute gain case, as each subgroup covers more data. It
is noticeable in Figure 10b that a subgroup with a standard deviation similar
to the dataset leads to subgroups that are spread throughout the whole range
of values. Nonetheless, that subgroup covers more regions with lower grades
than the dataset, making it a relevant result to understand the dataset better.

In general, it can be seen that some conditions often appear in the subgroups,
such as household income above and below 5 minimum wages and education
of one of the parents equal or above high school. It seems that the presence
or absence of these variables is highly associated with above or below-average
performance, respectively.

Looking at specific subgroups, it is interesting to see that in the 4th subgroup
of the absolute gain, the Quantitative reasoning grade is equal to the average
behaviour of the dataset (77%), while the English grade is 8% above average.
Looking at the subgroups with normalised gain, we see that there are only
slight variations of their descriptions and that they belong to a similar socioe-
conomic macro group but with slight differences in their descriptions, which
corresponds to small differences in their grades distribution.

Violation of the model assumptions. Here, we can observe how our method be-
haves when some modelling assumptions are violated. Regarding the truncated
values, it seems that the normalised gain is affected by grades around 100 (as
seen in Figures 10c and 10d) as most of its subgroups capture these students,
which increases the average and lowers the standard deviation, making them
rank higher. Our method was not developed for highly stratified target values,
but the results seem to show that it does not seem prohibitive to the use of
SSD++ in these cases as long as the stratification is mild and the user takes
into account this fact.

Regarding the independence assumption, it seems that the subgroups found
are still relevant, although both grades are almost always taken into account
together, i.e., as the values are positively correlated, it is more likely to find
subgroups with mean values that are high or low for both exams, but not high
for one and low for the other. This is expected as the encoding of independent
normal distributions does not take into account the covariance between target
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variables, and thus that case is not deemed a deviation by the current model
formulation.
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(b) 2nd subgroup with absolute gain
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(c) 1st subgroup with normalised gain
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(d) 2nd subgroup with normalised gain

Fig. 10 Scatter plot of the grades of students for Quantitative Reasoning and
English exam, together with the grades associated with the descriptions of the
1st and 2nd with absolute and normalised gain
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s description of a student socioeconomic background ns Quant. English

1 household income ≥ 5 min. wage & public school = no 1676 87± 16 88± 14
& edu mother > high school & Microwave = yes

2 household income < 5 min. wage 4031 72± 25 54± 26
& stratum < 5 & public school = yes

3 gender = M & edu father ≥ high school 1478 85± 17 78± 20
& social support = None & stratum > 3
& public school = no

4 social support = None & edu father > high school 997 77± 22 76± 19
& public school = no & internet = yes
& mobile = yes
...

dataset distribution 1945∗ 77± 23 68± 26

(a) Subgroup list with absolute gain (β = 0). First 4 subgroups of a total of 7 and swkl
= 0.41

s description of a student socioeconomic background ns Quant. English

1 household income ≥ 5 min. wage & gender = M & 39 96± 5 92± 6
household size < 3 & edu father > high-school
& mobile = yes

2 household income ≥ 5 min. wage 23 96± 5 95± 4
& school type = academic & occ. mother = retired
& edu father ≥ Undergrad

3 household income ≥ 5 min. wage 30 96± 5 93± 6
& job mother = independent & stratum ≥ 4 & gender = M
& job father = independent

4 job mother = executive & stratum ≥ 4 & mobile = yes 32 93± 9 94± 6
& job father = independent & public school = no
...

dataset distribution 942∗ 77± 23 68± 26

(b) Subgroup list with normalized gain (β = 1). First 4 subgroups of a total of 34 and swkl
= 0.52

Fig. 11 Colombia engineering students performance in Quantitative Rea-
soning and English exams. The results of Fig. 11a and 11b were obtained
by SSD++ with absolute gain (β = 0) and normalised gain (β = 1). The
dataset contains two numeric target variable Quantitative Reasoning and En-
glish exams in a 0-100% scale. The dataset represents 12 412 engineering stu-
dents in Colombia, their grades in university national exams and their social-
economic background. Description contains information regarding students
socio-economic background, ns the number of instances covered, Quant. and
English the average grade and standard deviation in the respective exams. ∗

The n of the dataset is the total number of instances in the dataset
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11 Related work

In this section we cover work related to our proposed MDL subgroup lists,
in three categories: subgroup discovery ; rule learning ; and MDL for pattern
mining. The relevance of each topic is as follows: subgroup discovery directly
relates to the task at hand; rule learning are generalisations of subgroup dis-
covery; and MDL for pattern mining shares the same theory for formalising
the problem.

11.1 Subgroup discovery

In its traditional form, subgroup discovery is also known as top-k subgroup
mining (Atzmueller, 2015), entails the mining of the k top-ranking subgroups
according to a quality measure and a number k selected by the user. This
formulation suffers from three main issues that make it impractical for most
applications: 1) lack of efficient search algorithms for more relevant quality
measures (van Leeuwen and Knobbe, 2012; Bosc et al., 2018); 2) redundancy
of subgroup sets mined, i.e., the fact that subsets with the highest deviation
according to a certain quality measure tend to cover the same region of the
dataset with slight variations in their description of the subset (van Leeuwen
and Knobbe, 2012); 3) lack of statistical guarantees and generalisation of mined
subgroups (van Leeuwen and Ukkonen, 2016). We will now go over the con-
tributions of previous works on all these issues, with a specific focus on the
last two—redundancy and statistical guarantees—which our work proposes to
solve.

11.1.1 Efficient search algorithms

Algorithms for subgroup discovery can be broadly divided into three cate-
gories: 1) exhaustive search; 2) sampling-based methods; and 3) heuristics. In
our work, we use a heuristic approach based on beam search to generate the
candidate subgroups to add at each iteration. We will now present the devel-
opments in each of these three topics and why they are not feasible for finding
good subgroup lists.

Exhaustive search methods have the advantage of guaranteeing to find the
best solution. Most of these approaches in SD are either based on branch-
and-bound (Webb, 1995) or on extending frequent pattern mining algorithms
(Aggarwal et al., 2014) to SD, such as Apriori-SD (Kavšek et al., 2003; Kavšek
and Lavrač, 2006) based on Apriori, and SD-Map (Atzmueller and Puppe,
2006) and SD-Map*(Atzmueller and Lemmerich, 2009) based on FP-growth.
However, for the implementation to be efficient in terms of time complexity,
e.g., SD-Map and SD-Map*, they combine pruning of the search space with
efficient traversal and data structures. And even though these approaches can
handle multi-target problems, their efficiency is constrained to specific quality
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measures that allow for efficient search and/or pruning of the search space.
To address some of the limitations regarding quality measures, Boley et al.
(2017) proposed an efficient exhaustive search (for numeric targets) to quality
measures that consider the dispersion of the target values. Also, note that
the previous methods could only find the optimal given already discretised
explanatory variables, thus Belfodil et al. (2018) proposing to mine subgroups
over numeric explanatory variables with guarantees. The main limitation of
these approaches is that they need to be tailored for specific quality measures,
mostly focus on binary targets, require special handling of numeric explanatory
variables, do not take the redundancy of the found subgroups into account,
and are less efficient for a task where they need to be run multiple times—such
as in SSD.

Sampling approaches can be seen as an attractive time-efficient alternative
to exhaustive search, especially when interacting with user’s preferences is
required Boley et al. (2011); Moens and Boley (2014). Nonetheless, they require
a probability distribution over the pattern space, which needs to be tailored
to specific quality measures and attribute types.

Heuristic approaches are used when an exhaustive search is not feasible, such
as in the case of non-trivial targets, e.g., Bayesian networks in exceptional
model mining (Duivesteijn et al., 2010), when the optimal subgroup defini-
tion changes throughout the problem such as in SSD, or when faster solutions
are deemed necessary. The most common heuristic is the beam search (Lavrač
et al., 2004; Meeng and Knobbe, 2011; van Leeuwen and Knobbe, 2012; Meeng
and Knobbe, 2021). It allows for a non-exhaustive but efficient procedure
that can easily generalise any quality measure or type of target variables.
This makes for an obvious choice for our problem as our quality measure—
equivalent to WKL plus some additional terms–cannot be easily pruned. Thus,
beam-search has the efficiency and flexibility that we need. Other heuristics
include Genetic Algorithms (GAs) (Carmona et al., 2010, 2014), which, to be
efficient, need to appropriately select a suitable formulation of the problem
and tweak the hyperparameters for each dataset.

11.1.2 Redundancy of subgroup sets and subgroup set discovery

To address redundancy among the found subgroups, most previously proposed
approaches encompass supervised pattern set mining (Bringmann and Zim-
mermann, 2007), and methods based on relevance (Großkreutz et al., 2012),
and diversity (van Leeuwen and Knobbe, 2011, 2012). Unlike diversity-based
methods, the supervised pattern set mining objective is to find a fixed number
of patterns, which must be chosen in advance. At the same time, relevance is
limited to non-numeric targets. It is the last group, the diversity-based meth-
ods, that share the most similarities to our work, i.e., the area of Subgroup Set
Discovery.
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As introduced in Section 2.3, Subgroup Set Discovery is an instantiation of
the LeGo framework, that passes from local descriptions of the data (SD) to
a global model (SSD) (Knobbe et al., 2008). The main approaches in SSD
are CN2-SD (Lavrač et al., 2004), Diverse Subgroup Set Discovery (DSSD)
(van Leeuwen and Knobbe, 2012), Skylines of subgroup sets (van Leeuwen and
Ukkonen, 2013), Monte Carlo Tree Search for Data Mining (MCTS4DM) (Bosc
et al., 2018), Subjectively Interesting Subgroup Mining (SISD) (Lijffijt et al.,
2018), and FSSD (Belfodil et al., 2019). Table 5 summarises the differences
between Subgroup Set Discovery methods, with SSD++ representing our ap-
proach and where all methods are compared in terms of: if they use a list or
a set; the target variables they support; if they have statistical guarantees; if
they have automatic stopping criteria (not defined by the user); and if they
have a global definition of a subgroup set or list. Note that top-k mining algo-
rithms could be directly applied to SSD if one iteratively adds subgroups and
re-weights the instances (Lavrač et al., 2004). However, these methods would
also miss a global definition of the problem and would need to be fine-tuned
for the dataset at hand.

Considering the methods in more detail, CN2-SD (Lavrač et al., 2004) is a
direct adaptation of CN2—a classical rule learner for classification—was one
of the first methods to deal with redundancy and can be applied to nomi-
nal target variables. Algorithmically, it uses a sequential approach, wherein
each iteration adds one subgroup to the set and then removes the data cov-
ered by that subgroup until no more data can be covered in this way. More
specifically, the method can also be used for unordered search—where only the
data of the class of interest covered by each subgroup is iteratively removed—
or use a weighted covering scheme that, instead of iteratively removing the
covered instances, weighs them based on how many times they were covered
before. DSSD (van Leeuwen and Knobbe, 2012) developed a technique based
on a novel measure of overlap between subgroups to iteratively find a set
of subgroups. It can be applied to single-and-multi-target nominal and nu-
meric variables with different types of quality measures. Skylines of subgroup
sets (van Leeuwen and Ukkonen, 2013) are proposed to directly account for
quality-diversity trade-off and find the Pareto optimal subgroup sets of size
k. MCTS4DM (Bosc et al., 2018) uses Monte Carlo tree search to improve
the quality of the subgroups found. However, it can only be applied to binary
target variables and explanatory variables of the same type (all numeric or
all nominal). Subjectively Interesting Subgroup Discovery (Lijffijt et al., 2018)
finds the subjectively most interesting subgroup for numeric target variables
with regard to the user’s prior knowledge, based on an information-theoretic
framework for formalising subjective interestingness. By successively updat-
ing the prior knowledge based on the found subgroups, it iteratively mines a
diverse set of subgroups that are also dispersion-aware. FSSD (Belfodil et al.,
2019) is a more recent approach that considers the ‘union’ of all subgroups
as a single pattern by forming a disjunction of subgroups and evaluating its
quality and can only be applied to binary target variables. This approach is
similar to a sequential approach for mining subgroups. However, the individual
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contributions of each subgroup are dissolved in the ‘new’ subgroup formed by
the disjunction of all subgroups.

Table 5 Comparison of Subgroup Set Discovery methods in terms of their key
properties. From left to right: model class (list or set); types of supported target
variables: binary, nominal, numeric and multi-target; statistical guarantees of
the subgroups mined; automatic stopping criterion (not defined by the user);
global formulation of a subgroup set/list.

Target variables

Method Model binary nom. num. multi Statistical Stopping Global

SSD++ list 3 3 3 3 3 3 3
CN2-SD list 3 3 - - - - -
DSSD set 3 3 3 3 - - -
Skylines set 3 3 - - - - 3
MCTS4DM set 3 - - - - - -
SISD set - - 3 3 3 - -
FSSD list 3 - - - - 3 3

11.1.3 Subgroup discovery with statistical guarantees

In terms of statistical guarantees to subgroup discovery, most approaches con-
sider first mining the top-k subgroups and then post-processing them in terms
of a test to find statistically significant subgroups (Duivesteijn and Knobbe,
2011; van Leeuwen and Ukkonen, 2016).
Duivesteijn and Knobbe (2011) proposed to use random permutations of the
target variable with respect to a quality measure to evaluate how the dis-
covered subgroups compare against the null hypothesis generated by those
permutations. Later, van Leeuwen and Ukkonen (2016) discussed the concept
of significance for subgroup discovery and concluded that p-values should be
used with caution as not all false discoveries can be removed in this way, as
there will always be random subsets with large effect sizes.
Two approaches that automatically find statistically robust subgroups are Li-
jffijt et al. (2018) and Song et al. (2016); Song (2017). The first approach
(already mentioned in the last section), uses the maximum entropy princi-
ple to iteratively find subjectively interesting subgroups against a user’s prior
knowledge. The second proposes a quality measure that directly considers
the subgroup distribution and if this is statistically different from the back-
ground/dataset distribution.

Our approach strongly deviates from the first two, as our method tests for
statistical guarantees during the mining process, and it is parametric—as we
use categorical and normal distributions to model the targets. Also, our no-
tion of statistical robustness takes into account the concept of the subgroup
list model class. Regarding Lijffijt et al. (2018), even though they also mine
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subgroups iteratively, they lack a definition of an optimal subgroup set. Their
goal is to model the user’s subjective knowledge and find regions in the data
the user has no prior knowledge. Finally, our quality measure is similar to that
of Song et al. (2016); Song (2017) in their top-k nominal target case; however,
we also take into account multiple-hypothesis testing and focus on subgroup
lists.

11.2 Rule learning

Pattern mining and association rule mining (Agrawal et al., 1993) are con-
cerned with mining items that co-occur together, i.e., itemsets or patterns,
and relationships between itemsets and a target item, e.g., a class, respectively.
A known problem of their direct approach is the infamous pattern explosion,
i.e., they tend to return enormous amounts of patterns/rules. To solve this
problem, many approaches were proposed, but two stand out concerning our
work, namely, rule-based classifier and statistical rule mining.
To see the relationship with rule mining, first, note that subgroup discovery
can be seen as a specialisation of association rule mining. Second, subgroup
lists could be regarded as rule lists with a fixed default rule, i.e., the last rule
that gets activated when no other rule applies is fixed to ‘predict’ the global
distribution of the complete dataset. Rule lists and rule sets have long been a
common and successful way to compactly apply rules for classification (Rivest,
1987).

11.2.1 Rule-based classifiers

Earlier approaches to finding good rule-based models can be broadly divided
into two categories based on their model construction: greedy top-down or
bottom-up approaches. From a top-down perspective, methods such as CBA
(Liu et al., 1998) and CMAR (Li et al., 2001) start by mining all association
rules from the data and then adding them to the model one by one. From
a bottom-up perspective, methods such as (Cohen, 1995) mine one rule at a
time until a final model is obtained. Cheng et al. (2008) effectively removes
the two-step approach by using a branch-in-bound search on the FP-growth
process and iteratively reduces the search space until a set of discriminant sets
for classification is found. Nonetheless, the main limitation of these approaches
is that they are based on a heuristic definition of a rule-based model, i.e., they
add rules without a global optimal criteria.

Over the past years, rule learning methods that go beyond greedy approaches
have been developed, i.e., Monte-Carlo search for Bayesian rule lists (Letham
et al., 2015; Yang et al., 2017), and branch-and-bound with tight bounds for
decision lists (Angelino et al., 2017) and rule sets (Boley et al., 2021). How-
ever, the main limitation of these methods is that they can only be applied to
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small or mid-size datasets and are mostly limited to binary targets.

Even though all algorithms mentioned in this section resemble our approach,
their main goal is to make the best predictions—not to find the largest devi-
ations in the data. Even though the two problems are related, we emphasise
the theoretical difference between subgroup discovery and prediction in Ap-
pendix D, where the former focuses on local deviations and the latter on a
globally homogeneous partition of the data.

11.2.2 Statistical rule mining

The idea of mining rules with statistical guarantees is appealing as it increases
the users’ trust in the patterns found while at the same time reducing the num-
ber of rules returned by a miner (Hämäläinen and Webb, 2019). The concept
of statistical rule mining progressed by incrementally adding more statistical
guarantees. Webb (2007) proposed for the first time the mining of statistically
significant patterns, then Hämäläinen (2012) proposed KingFisher, an efficient
algorithm to mine dependent rules, i.e., rules that show a dependency with
respect to a target in terms of a dependency test like Fisher’s exact test. After
that, Hämäläinen and Webb (2017) added extra procedures to remove spuri-
ous relations from the miner findings. Lastly, the criteria under which causal
rules can be mined were defined and an efficient algorithm to mine them was
proposed (Budhathoki et al., 2021). All these methods focus on mining all the
possible individual statistically significant (or causal) rules and not on finding
a non-redundant set, as is the case of Subgroup Set Discovery. In this paper,
we aim to accomplish both at the same time, finding the best global subgroup
list while assuring local statistically robust subgroups.

11.3 MDL in pattern mining

In data mining, Krimp (Vreeken et al., 2011) was the first method to ap-
ply the MDL principle holistically, i.e., for the whole model selection process.
This seminal work used a version of crude MDL, i.e., a not completely optimal
‘two-part’ encoding of the data, to find the pattern list that compressed a
transaction dataset best to address the pattern explosion issue in pattern min-
ing. Recent works have aimed at improving the encoding through refined MDL
for encoding the data, i.e., an encoding that enjoys optimal properties at least
in expectation (Grünwald, 2007). The first of such approaches was DiffNorm
(Budhathoki and Vreeken, 2015), which used a prequential plug-in code to im-
prove the encoding of transaction data, and recently MINT was proposed to
mine real-valued pattern sets with a similar encoding (Makhalova et al., 2022).
Although Krimp, DiffNorm, and MINT are used to describe data, they aim to
find regularities—not deviations—and do not consider a target variable. For
an in-depth survey of MDL in pattern mining, please refer to the survey by
Galbrun (2020).
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MDL for rule learning MDL has been used to find optimal sets of association
rules for two-view data (van Leeuwen and Galbrun, 2015) and tabular data
(Fischer and Vreeken, 2019). The latter is the most related to our work, as it
aims to find rule sets that describe the data well. Like Krimp, it aims to find
all associations in the data, though not at identifying deviations as we do, and
no specific target variable(s) are defined.
As discussed in the contributions of our work in Section 1, this work builds
on top of MDL-based rule lists for classification (Proença and van Leeuwen,
2020). Compared to our work, Proença and van Leeuwen (2020) focuses solely
on classification, can only handle discretised explanatory variables while using
a less optimal model and data encoding.

12 Conclusions

We showed that finding good subgroup lists (ordered sets) that are both non-
redundant and statistically robust, i.e., robust subgroup discovery, is compu-
tationally feasible. To achieve this, we formally define the subgroup list model
class and the problem of robust subgroup discovery. Then, based on these
two, we propose an optimal formulation of subgroup lists based on the MDL
principle—that includes top-1 subgroup discovery in its definition. As opti-
mally solving the problem is not possible, we proposed a heuristic algorithm
dubbed SSD++ that approximates this objective using a greedy search that
adds the subgroup that locally minimises the MDL criterion to the list in
each consecutive iteration. Moreover, this approximation was shown to be
equivalent to Bayesian testing between subgroup and dataset marginal target
distributions plus a penalty for multiple hypothesis testing, which guarantees
that each subgroup added to the list is statistically sound.

These assertions are supported by empirical evidence obtained on a varied set
of 54 datasets. In the case of nominal targets, our method performed on par in
terms of subgroup list quality while obtaining smaller lists with fewer condi-
tions. In the case of numeric targets and through the use of a deviation-aware
measure, our method dominated in 92% of the cases. Finally, we evaluated
statistical robustness by testing the generalisation on unseen data. Our MDL-
based formulations obtained the lowest generalisation error 86% of the time
when compared to KL and WKL quality measures.

Through a case study relating the socioeconomic background and national
exam grades of Colombia engineering university students, we showed that
SSD++ could be flexibly adapted to different goals of the user. In particu-
lar, it can change from a fine-grained perspective of the data that finds many
subgroups covering small parts of the data well, to a coarse perspective that
finds few subgroups covering large parts of the data. Also, it was shown that
our method is robust to mild violations of our model assumptions.
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In short, our approach can find interpretable, non-redundant, and statisti-
cally robust ordered lists of subsets’ descriptions that largely deviate from
‘normality’ for (selected) target variables—deviation from ‘normality’ is mea-
sured as a divergence between the subset and the dataset/background distri-
butions for those variables—based on the user-specified interests on coverage—
descriptions that cover a small or large portion of the data.

Limitations. Even though the SSD++ algorithm has some appealing local
statistical properties, we do not know how far the found models are from the
optimal subgroup lists as defined by the global MDL criteria we proposed. Also,
it does not scale very well for numeric targets, which was to be expected from
the time complexity analysis. At the moment, multiple target variables are
assumed to be independent, which can produce erroneous results when this
assumption is violated. Preliminary experiments show that for moderately
correlated variables (e.g., with a correlation of 0.5) this does not seem to
be an issue, but there is no quantification of its implications. Similarly, for
numeric targets, we use a normal distribution, and several datasets violate this
assumption, either by behaving like a multi-modal or truncated distribution.

Future work. The main lines of research for future work can be divided into
three categories: 1) extending subgroup lists to other target variables and/or
distributions; 2) algorithmic developments; and 3) generalise this framework
to other model classes. In the first category, an obvious extension would be to
distributions that take into account multiple dependent target variables, such
as multivariate-normal distributions for numeric targets and over itemsets for
the nominal case. Another interesting and straightforward development would
be the extension of our work to mixed targets, combining both nominal and
numeric variables. In the second category, algorithmic developments could go
from mere upper-and-lower bounds to improvements in search methods and
to study the feasibility of global search such as Markov Chain Monte Carlo
methods used by Yang et al. (2017) or branch-and-bound algorithms used by
Boley et al. (2021). In the third category, our approach could be formalised
for subgroup sets, allowing for overlap between the subgroups.
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Appendices

A Normalised maximum likelihood independence for
non-overlapping multinomials

For this section, let us assume that we have a dataset D = {X, Y } and model M that
forms a partition over the whole data. The model M divides the data D in ω parts, of the
form {(X1, Y 1), · · · , (Xω , Y ω)}. Each part has an associated categorical distribution with

estimated parameters Θ̂i over the target part Y i (as defined in Section 2).

Our goal in this section is to show that the NML encoding of a partition equals to the sum
of the NML encoding of its parts:

LNML(Y | X,M) =

ω∑
i=1

LNML(Y i). (40)

Note that in the case of a subgroup list, as the default rule does not require NML encoding,
the M used in this section represents the subgroups S, and D means the data covered by
these. In the case of a tree or rule list, M represents the model that partitions the data at
the level of leaves and rules (including default rule), respectively, and D the whole dataset.
This is done without any loss of generality as the separation property allows us to separate
the encoding of the default rule for a subgroup list.

First, let us recall the definition of the NML probability distribution (Shtarkov, 1987):

LNML(Y | X,M) = − log

(
Pr(Y | X; M̂(Y | X))∑

Z∈Yn Pr(Z | X; M̂(Z | X))

)
,

where Yn is the set of all possible sequences of n points with k = |Y| categories, M̂(Y | X)

and M̂(Z | X) are the models with parameters estimated according to the maximum likeli-
hood over the data Y and Z, respectively. Taking into account that our data is independent
and identically distributed (i.i.d.), and that our model M partitions the data into ω parts,
we can further develop the previous formula to:

LNML(Y | X,M)
i.i.d.
= − log

( ∏n
i=1 Pr(yi | xi; M̂(Y | X))∑

Z∈Yn

∏n
i=1 Pr(zi | xi; M̂(Z | X))

)

= − log

( ∏ω
i′=1 Pr(Y i

′
; Θ̂(Y i

′
))∑

Z∈Yn

∏ω
i′=1 Pr(Zi′ ; Θ̂(Zi′ ))

)

= − log

(∏ω
i′=1 l(Θ̂

i′ | Y i′ )
g(Y,X,M)

)

= − log

 ω∑
i′=1

l(Θ̂i
′
| Y i

′
)

+ log g(Y,X,M),

(41)

where l(Θ̂i
′ | Y i′ ) is the likelihood function for each of the ω parts and g(Y,X,M) is a

complexity function that depends on these 3 variables.

The first term is already independent for each part; however, the second is not.

Let us now look at g(Y,X,M) in the case where we only have one part in the dataset, i.e.,
D1. We will call this term the NML complexity of a multinomial distribution and denote it
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by C(n1, k) of one part D1 = {Y 1, X1}, with n1 = |D1| and k = Y

C(n1, k) = log

 ∑
Z∈Yn1

Pr(Z1; Θ̂(Z1))


= log

 ∑
Z∈Yn1

n1∏
i=1

Pr(zi; Θ̂(Z1))


= log

 ∑
n11+n12+...+n1k=n1

n1!

n11!n12!...n1k!

∏
c∈Y

(
n1c

n1

)n1c


(42)

where n1c is the number of points of category c in Y 1, and the passage from the second
equality to the last is a property of multinomial distributions commonly used to make the
computation of C(na, k) simpler (Grünwald, 2007). It is interesting to note that C(na, k)
only depends on the number of points in Y 1 and its cardinality, not on the actual values.
This term, i.e., the complexity of a multinomial distribution over n1 points with k possible
values, measures the likelihood of each possible sequence.

Table 6 All possible sequences of a partition of fixed length of the data in
three parts. Fixed length means that all possible parts always have the same
amount of points, as e.g. |A1| = |A2| = · · · = |Aa| = nA.

Part 1 Part 2 Part 3

A1 B1 C1

A1 B1 C2

...
...

...
A1 B2 C1

...
...

...
Aa Bb Cc

Now we must generalise from a part to the whole partition of the dataset. To illustrate how
to do this, let us first look at Table 6, which shows an example of all the possible sequences
in a fixed-length three-part partition of the data. Then, taking into account those three
parts, let us look at how the probabilities of all those sequences could be computed:

∑
∀a,b,c

Pr(Aa) Pr(Bb) Pr(Cc) =

∑
∀a

Pr(Aa)

 ·
∑
∀b,c

Pr(Bb) Pr(Cc)


=

∑
∀a

Pr(Aa)

 ·
∑
∀b

Pr(Bb)

 ·
∑
∀c

Pr(Cc)

 ,

where this follows naturally from the distributive property of the multiplication. It is easy
to see that this generalises to partitions of any number of parts. Thus, going back to the
complexity term g(Y,X,M), we can see that
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log g(Y,X,M) = log
∑
Z∈Yn

ω∏
i′=1

Pr(Zi
′
; Θ̂(Zi

′
))

= log
ω∏
i′=1

∑
Zi′∈Yn

i′

Pr(Zi
′
; Θ̂(Zi

′
))

=
ω∑
i′=1

log
∑

Zi′∈Yn
i′

Pr(Zi
′
; Θ̂(Zi

′
))

=
ω∑
i′=1

log C(ni′ , k)

(43)

Substituting this back into Eq. (41), we obtain what we wanted:

LNML(Y | X,M) = − log

 ω∑
i=1

l(Θ̂i | Y i)

+
ω∑
i=1

log C(ni, k)

=

ω∑
i=1

l(Θ̂i | Y i) + C(ni, k)

=

ω∑
i=1

LNML(Y i)

(44)

B Bayesian encoding of a normal distribution with mean and
standard deviation unknown

For encoding a sequence of numeric valued i.i.d. observations such as Y = {y1, ...., yn}, the
Bayesian encoding takes the following form:

PBayes(Y ) =

∫
Θ
f(Y | Θ)w(Θ) dΘ, (45)

where f is the probability density function (pdf), Θ is the set of parameters of the dis-
tribution, and w(Θ) the prior over the parameters. In the case of a normal distribution
Θ = {µ, σ}, with µ and σ being its mean and standard deviation, respectively, the pdf
f(Y | Θ) over a sequence Y is the multiplication of the individual pdfs, thus:

f(Y | µ, σ) =
1

(2π)n/2σn
exp

− 1

2σ2

n∑
i

(yi − µ)2

 , (46)

In order not to bias the encoding for specific values of the parameters, we choose to use the
constant Jeffrey’s prior of 1/σ2 for the unknown parameters µ and σ, and add an extra.
Thus, our prior is given by:

w(µ, σ) =
1

√
2πσ2

, (47)

where 1/
√

2π was added for normalisation reasons.
Putting everything together, one obtains:

PBayes(Y ) =

= (2π)−
n+1
2

∫ +∞

−∞

∫ +∞

0

1

σn+2
exp

− 1

2σ2

 n∑
i

(yi − µ)2


 dσ dµ.

(48)



Robust subgroup discovery 69

The integrals over the whole space of the parameters µ and σ allow us to penalise the fact
that we do not know the statistics a priori, thus penalising the fact that distribution over
n points could, by chance, have the same statistics like the one found in the data.

Note that using an improper prior requires that we somehow make it proper, i.e., we need
to find a way to make the integration over the prior finite

∫ ∫
w(µ, σ) = K, where K is

a constant value. The usual way to make an improper prior finite is to condition on the
k minimum number observations Y |k ∈ Y needed to make the integral proper (Grünwald,
2007), which in the case of two unknowns (µ and σ) is k = 2. Thus, instead of using w(µ, σ)
we will in practice be using w(µ, σ | Y |2), and using the chain rule and the Bayesian formula
returns a total encoding of Y equal to

P (Y ) = PBayes(Y | Y |2)P (Y |2) =
PBayes(Y )

PBayes(Y |2)
P (Y |2) (49)

where P (Y |2) is a non-optimal probability used to define Y |2 = {y1, y2} that we will define
later and y1, y2 chosen in a way that maximises P (Y ). Now that we have all the ingredients to
define P (Y ) we will start by defining PBayes(Y ) and then choose the appropriate probability

for P (Y |2).

To solve the first integral of PBayes(Y ) in Eq. (48), we integrate in σ and note that the
formula is an instance of the gamma function,

Γ (k) =

∫ +∞

0
zk−1e−z dz, (50)

with the corresponding variable transformation:

z =
A

2σ2
;

1

σ
=

21/2z1/2

A1/2
; dσ = −

σ

2z
dz; A =

 n∑
i

(yi − µ)2

 , (51)

Performing the variable transformation and noting that the minus sign of dz cancels with
the reversing of the integral limits, we get:

PBayes(Y ) =

= Γ

(
n+ 1

2

)
2

n+1
2
−1(2π)−

n+1
2

∫ +∞

−∞

 n∑
i

(yi − µ)2

−
n+1
2

dµ.
(52)

To solve the integral in µ we need to introduce the statistics µ̂ and σ̂ as the values estimated
from the data. We define these quantities as:

µ̂ =
1

n

n∑
i

yi; σ̂2 =
1

n

n∑
i

(yi − µ̂)2 , (53)

where µ̂ is the mean estimator over n data points and σ̂2 is the estimator of the variance.
Note that for the variance the biased version with n was used instead of with n − 1 as it
allows to compute the Residual Sum of Squares (RSS) directly by RSS = nσ̂.
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Focusing now on the interior part of the integral of Eq. 52 and rewriting it in order to
resemble the t-student distribution, we obtain:

 n∑
i

(yi − µ)2

−(n+1)/2

=

 n∑
i

(yi)2 − nµ̂2 + nµ̂2 − 2nµ̂µ+ nµ2

−(n+1)/2

=

 n∑
i

(yi)2 − nµ̂2 + n(µ̂− µ)2

−(n+1)/2

=

[
nσ̂2 + n(µ̂− µ)2

]−(n+1)/2
=

[
nσ̂2

]−(n+1)/2
[

1 +
(µ̂− µ)2

σ̂2

]−(n+1)/2

[
nσ̂2

]−(n+1)/2

1 +
1

n

(
µ̂− µ
s2s

)2
−(n+1)/2

,

(54)

where s2s = σ̂2/n is the “sampling” variance. Now, taking into account the fact that the
integral of the t-student distribution over the whole space is equal to one, and reshuffling
around its terms we get

∫ +∞

−∞

[
1 +

1

n

(
µ̂− µ
ss

)2
]−n+1

2

dµ =
Γ
(
n
2

)√
πnss

Γ
(
n+1
2

) . (55)

Inserting this back in Eq. 48 we obtain:

PBayes(Y ) =

= Γ

(
n+ 1

2

)
2

n+1
2
−1(2π)−

n+1
2
Γ (n

2
)
√
πnss

Γ (n+1
2

)

[
nσ̂2

]−(n+1)/2

= 2−1π−
n
2 Γ

(
n

2

)
1
√
n

[
nσ̂2

]−n
2
,

(56)

Returning to the the conditional probability of Eq. (49), we see that we still need to define
P (Y |2), the non-optimal probability of the first two-points. As in the case of our model class
we assume that the dataset overall statistics are known, i.e., Θ = {µ̂d, σ̂d}, we will use this
distribution to find the probability of the points Y |2 = {y1, y2} as :

P (Y |2) = log 2π + log σ̂d +

 1

2σ̂2
d

2∑
i

(yi − µ̂d)2

 log e. (57)
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Finally, applying the minus logarithm base 2 to all the terms in Eq (49) to obtain the total
code length in bits,

LBayes2.0(Y ) = − logPBayes(Y ) + logPBayes(Y
|2)− logP (Y |2)

= 1 +
n

2
log π − logΓ

(
n

2

)
+

1

2
logn+

n

2
log
(
nσ̂2

n

)
− 1−

2

2
log π + 0−

1

2
− log

 2∑
i

(yi − µ̂2)2


+

2

2
log π + log σ̂d +

 1

2σ̂2
d

2∑
i

(yi − µ̂d)2

 log e

=
n

2
log π − logΓ

(
n

2

)
+

1

2
logn+

n

2
log
(
nσ̂2

n

)
+ Lcost(Y

|2),

(58)

where µ̂2 is the estimated mean of y1, y2 and Lcost(Y |2) is the extra cost incurred of not
being able to use a refined encoding for Y |2. Now that the encoding length is defined, we need
to choose the two points. i.e., y1, y2. Because we want to minimise this length, we notice
that there are only two terms that contribute to it in Lcost(Y |2), and thus by choosing
the two observations close to µ̂d minimises both the encoding of P (Y |2) and maximise
PBayes(Y

|2) for most cases. There are exceptions to this, depending on the respective values
of µd and y1, y2, but these are not significant to change the values too much and require
less computational search to find the points.

B.1 Convergence to BIC for large n

In this section, it is shown that for a large number of instances n, the Bayesian encoding of a
normal distribution with unknown mean and standard deviation (Eq. (58)) converges to the
encoding of a normal distribution with mean and standard deviation known plus logn, i.e.,
proportional to the definition of the Bayes Information Criterion (BIC). First, the encoding
of a normal distribution with mean and standard deviation known over n i.i.d. points is
equal to the sum of the individual encodings:

L(Y | Θ̂) =
n

2
log 2π +

n

2
log σ̂2 +

 1

2σ̂2

n∑
i

(yi − µ̂)2

 log e. (59)

Second, we need to use the Stirling approximation of the Gamma function for large n:

− logΓ

(
n

2

)
∼

∼ −
1

2
log π −

1

2
log (n− 2)−

(
n

2
− 1

)
log

(
n

2
− 1

)
+

(
n

2
− 1

)
log e,

(60)
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and finally we insert it into Eq. (58) and assume τ = 1 to obtain:

L(Y ) ∼

∼ 1 +
n− 1

2
log π +

1

2
log

(
n

n− 2

)
+
n

2
log

(
nσ̂2

n/2− 1

)
+

(
n

2
− 1

)
log e

+ log

(
n

2
− 1

)
+ Lcost(Y

|2)

∼
n

2
log π +

n

2
log 2σ̂2 +

 1

2σ̂2

n∑
i

(yi − µ)2

 log e+ logn− log e+ Lcost(Y
|2)

= L(Y | Θ̂) + log
n

e
+ Lcost(Y

|2)

∼
1

2

(
2L(Y | Θ̂) + 2 logn− 2 log e

)
=

1

2
BIC,

(61)

where from the second to the third line, we assumed large n, making some of the terms
disappear, while the definition nσ̂2 =

∑n
i (yi − µ)2 is used for making the third term of

the third expression appear. From the fourth to the fifth expressions, it was assumed that
Lcost(Y |2) is negligible, as it is the cost of not being able to encode the first two points
optimally. For the Bayes information criterion, we used its standard definition,

BIC = −2 ln `(Θ | Y ) + k lnn, (62)

where `(Θ | Y ) is the likelihood as estimated from the data, and k is the number of param-
eters, which in our case is 2.

C Derivation of MDL-based optimal subgroup lists equivalence to
WKL-based SD

In this appendix we derive the formula that relates the MDL-based subgroup lists with
WKL-based subgroup discovery for categorical and normal distributions. This arises as the
solution of the maximisation problem (equivalent to the standard MDL minimisation) of:

s∗ = arg max
s∈M

[
L(Y d | Θd)− L(Y | X,M)− L(M)

]
.

Categorical distribution derivation:

L(Y | Θ̂d)− L(Y | X,M)− L(M) =

= L(Y a | Θ̂d) + �����
L(Y ¬a | Θ̂d) − LNML(Y a)−�����

L(Y ¬a | Θ̂d) − L(M)

=
∑
y∈Y s

log
p̂y|a

p̂y|d
− C(na, k)− L(M)

= na
∑
c∈Y

p̂c|a log

(
p̂c|a

p̂c|d

)
− C(na, k)− L(M)

= naKL(Θ̂a; Θ̂d)− C(na, k)− L(M),

(63)

where naKL(Θ̂a; Θ̂d) is the Weighted Kullback-Leibler divergence from Θ̂a to Θ̂d.
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Normal distribution derivation: Using the Stirling approximation of the gamma func-

tion: Γ (n+ 1) ∼
√

2πn
(
n
e

)n
; in Appendix B.1, the derivation is as follows:

L(Y | Θ̂d)− L(Y | X,M)

= L(Y a | Θ̂d)− LBayes2.0(Y a | Xa)− L(M)

∼
na

2
log

σ̂2
d

σ̂2
a

+

 1

2σ̂2
d

∑
yi∈Y a

(yi − µ̂d)2

 log e−
na

2
log e− logna − L(M)

=
na

2
log

σ̂2
d

σ̂2
a

+

[∑
yi∈Y a (yi)2 − nµ̂2a + nµ̂2a − 2nµ̂aµ̂d − µ̂d)2

2σ̂2
d

]
log e

−
na

2
log e− logna − L(M)

= na

[
log

σ̂d

σ̂a
+
σ̂2
a + (µa − µd)2

2σ̂2
d

log e−
log e

2

]
− log(na)− L(M)

= naKL(Θ̂a; Θ̂d)− logna − L(M),

(64)

where naKL(Θ̂a; Θ̂d) is the usage-weighted Kullback-Leibler divergence between the normal
distributions specified by the respective parameter vectors.

D Difference between subgroup discovery and rule-based
predictive models

This appendix shows the difference between the objective being maximised for subgroup
discovery and for predictive rules. We do this through the comparison of the equivalent
maximisation MDL scores for subgroup lists and classification rule lists (Proença and van
Leeuwen, 2020) with only one rule/subgroup—without loss of generality for greater sizes
or for regression tasks. To differentiate both model classes, SL and RL will be used for
subgroup lists and classification rule lists, respectively.
First, lets recall the form of a subgroup list SL as given in Figure 4:

subgroup 1 : if a v x then y ∼ Cat(Θ̂a)

dataset : else y ∼ Cat(Θ̂d)

where, Θ̂a are the estimated parameters of subgroup 1 and Θ̂d are the estimated parameters
of the marginal distribution of the dataset and are thus constant for each dataset. Second,
the model form of a classification rule list RL takes the following form:

rule 1 : if a v x then Cat(Θ̂a)

default : else y ∼ Cat(Θ̂¬a)

where Θ̂¬a was used to emphasise that the default rule of a rule list is not fixed, and is
equivalent to the ‘not rule 1’. This is the key difference between these two types of models,
the default rule is fixed to the marginal distribution of the dataset for subgroup lists, and
the default rule has the distribution of the negative set of the rules in the list for rule lists. It
should be noted that there are many definitions of rule lists that use a fixed rule; however,
having a variable default rule that maximises the prediction quality is the best representative
of rule lists and of the objective of finding the best machine learning model, i.e., returning
the best partition of the data with the smallest error possible. Note that a decision tree is
also part of this family of models, as any path starting at the tree’s root to one of its leaves
also forms a rule. Thus, a decision tree is equivalent to a set of disjoint rules, i.e., none of
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the rules described in this way overlap on a dataset. For the type of classification rule lists
defined above, the encoding of the first rule and default rule is given by Eq. 27 as for both
rules; the parameters are unknown.
Thus the MDL score of a rule list is given by:

L(D,RL) = L(Y a | Xa) + L(Y ¬a | X¬a) + L(RL), (65)

and note that the model encoding L(RL) = L(SL), has both lists can be described in the
same manner.
Following the same steps as in Section 7.1 by turning the MDL score objective from a
minimisation to maximisation by multiplying by minus one and adding the constant L(Y d |
Θd), we obtain the same objective as in Eq. 7.1:

r∗ = arg max
s∈M

[
L(Y d | Θd)− L(Y | X, RL)− L(RL)

]
,

where r is the rule that maximises the objective. Working out this equation, maximisation
objective of a classification rule list for a target variable of k class labels is given by:

L(Y | Θ̂d)− L(Y | X,M)− L(RL)

= L(Y a | Θ̂d) + L(Y ¬a | Θ̂d)− L(Y a | Xa)− L(Y ¬a | X¬a)− L(RL)

= naKL(Θ̂a; Θ̂d)− C(na, k) + n¬aKL(Θ̂¬a; Θ̂d)− C(n¬a, k)− L(RL),

(66)

This should be contrasted with the maximisation objective of subgroup list of Eq. 36, which
is given by:

L(Y | Θ̂d)− L(Y | X,M)− L(SL) =

naKL(Θ̂a; Θ̂d)− C(na, k)− L(SL).

Comparing both of the last equations, we can notice the crucial distinction between subgroup
discovery and classification: the local nature of subgroup discovery and the global nature of
the classification task. In other words, subgroup discovery aims at finding subgroups that
locally maximise their quality, independently of the rest of the dataset, and even though
rules for classification try to maximise their local quality also, they have to take into account
the quality of their negative set, i.e., a classification rule cannot be considered by its quality
alone, it has to be considered in terms of its global impact in the dataset. On the other hand,
this result also shows the similarity between both tasks and where the confusion sometimes
arises, i.e., in some cases, the best subgroup can also be the best rule. An example of this
would be a very large dataset (relatively to the number of observations covered by the rule).
Here, the best rule/subgroup would cover a small number of observations compared to the

rule formed by the negative set of that rule, i.e., D¬a, as a similar distribution to Θ̂d, making
Θ̂¬a ∼ Θ̂d. Nonetheless, this similarity decreases in the case of larger lists, as the default
rule will always represent what is left. In contrast, in a subgroup list, it remains constant and
represents what we consider uninteresting. The same result can be obtained for regression
rule lists.



Robust subgroup discovery 75

E Datasets for empirical experiments

The datasets selected are commonly used in machine learning and were retrieved from
UCI (Dua and Graff, 2017), Keel (Alcalá-Fdez et al., 2011), MULAN (Tsoumakas et al.,
2011) repositories. The datasets used for nominal and numeric targets experiments can be
seen in Table 7 and 8, respectively.

Table 7 Nominal targets datasets: single-binary, single-nominal and multi-
label. Dataset properties: number of {target variables T ; target labels |Y|;
samples |D|; type of variables (nominal/numeric)}.

Dataset T |Y| |D| V (nom./num.)

sonar 1 2 208 (0/60)
haberman 1 2 306 (0/3)
breastCancer 1 2 683 (0/9)
australian 1 2 690 (0/14)
TicTacToe 1 2 958 (9/0)
german 1 2 1 000 (13/7)
chess 1 2 3 196 (36/0)
mushrooms 1 2 8 124 (22/0)
magic 1 2 19 020 (0/10)
adult 1 2 45 222 (8/6)

iris 1 3 150 (0/4)
balance 1 3 625 (0/4)
CMC 1 3 1 473 (0/9)
page-blocks 1 5 5 472 (0/10)
nursery 1 5 12 960 (7/1)
automobile 1 6 159 (10/15)
glass 1 6 214 (0/10)
dermatology 1 6 358 (0/34)
kr-vs-k 1 18 28 056 (6/0)
abalone 1 28 4 174 (1/7)

emotions 6 2 593 (0/72)
scene 6 2 2407 (0/294)
flags 7 2 194 (9/10)
yeast 14 2 2417 (0/103)
birds 19 2 645 (/258)
genbase 27 2 662 (1186/0)
mediamill 101 2 43 907 (0/120)
CAL500 174 2 502 (0/68)
Corel5k 374 2 5000 (499/0)
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Table 8 Numeric targets datasets: single-numeric and multi-numeric. Dataset
properties: {number of target variables T ; minimum and maximum target val-
ues [min.,max.]; number of samples |D|; number of type of variables (nomi-
nal/numeric)}.

Dataset T [min.;max.] |D| V (nom./num.)

baseball 1 [109; 6100] 337 (4/12)
autoMPG8 1 [9; 46.6] 392 (0/6)
dee 1 [0.8; 5.1] 365 (0/6)
ele-1 1 [80; 7675] 495 (0/2)
forestFires 1 [0; 1091] 517 (0/12)
concrete 1 [3; 21] 1030 (0/8)
treasury 1 [29; 90] 1049 (0/15)
wizmir 1 [29; 90] 1461 (0/9)
abalone 1 [1; 29] 4177 (0/8)
puma32h 1 [−0.0867; 0.0898] 8192 (0/32)
ailerons 1 [−0.0036; 0] 13750 (0/40)
elevators 1 [0.012; 0.078] 16599 (0/18)
bikesharing 1 [1; 977] 17379 (2/10)
california 1 [14999; 500001] 20640 (0/8)
house 1 [0; 500001] 22784 (0/16)

edm 2 [−1; 1] 154 (0/16)
enb 2 [6.01; 48.03] 768 (0/8)
slump 3 [0; 78] 103 (0/7)
sf1 3 [0; 4] 323 (0/10)
sf2 3 [0; 8] 1066 (0/10)
jura 3 [0.135; 166.4] 359 (0/15)
osales 12 [500; 795000] 639 (0/413)
wq 14 [0; 5] 1060 (0/16)
oes97 16 [30; 48890] 334 (0/263)
oes10 16 [30; 64560] 403 (0/298)
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F Empirical results of non-sequential subgroup discovery
algorithms

The comparison of SSD++ with subgroup set discovery algorithms that return sets (and
not lists) can be seen in Table 9.

Table 9 Single nominal target results for non-sequential methods plus
SSD++. This includes single-binary and single-nominal, respectively, sep-
arated by a horizontal line. The properties of the datasets can be seen in Ta-
ble 7, and are ordered by the number of target variables, number of classes,
and number of samples, in this order. The evaluation measures are {quality of
the subgroup set swkl; the number of subgroups |S|; and the average number
of conditions |a|}. Note that FSSD does not work for the single-nominal case,
and MCTS4DM only works for datasets with the same type of explanatory
variables, thus the empty values −.

DSSD MCTS4DM FSSD SSD++

datasets swkl |S|a |a| swkl |S| |a| swkl |S| |a| swkl |S| |a|
sonar 0.33 2 5 − − − 0.05 1 43 0.430.430.43 2 3

haberman 0.080.080.08 1 4 0.080.080.08 1 3 0.04 11 3 0.04 1 1

breastCancer 0.79 6 3 0.81 6 4 0.35 6 9 0.820.820.82 6 2

australian 0.50 3 3 0.54 7 6 0.33 15 12 0.550.550.55 5 2

tictactoe 0.50 4 3 − − − 0.20 5 3 0.870.870.87 16 2

german 0.150.150.15 4 5 − − − 0.10 6 11 0.14 4 3

chess 0.76 11 4 − − − 0.34 4 15 0.970.970.97 17 2

mushrooms 0.97 3 4 − − − 0.40 5 20 1.001.001.00 12 1

magic 0.30 40 3 − − − 0.06 3 10 0.470.470.47 69 4

adult 0.24 31 5 − − − 0.00 1 10 0.310.310.31 103 4

avg. rank 1.8 1.7 2.0 − − − 3.0 1.9 2.9 1.21.21.2 2.5 1.1

iris 1.44 3 2 1.451.451.45 4 3 − − − 1.44 4 1

balance 0.63 9 3 − − − − − − 0.690.690.69 9 3

CMC 0.18 7 3 0.16 20 4 − − − 0.250.250.25 7 2

page-blocks 0.36 19 3 − − − − − − 0.490.490.49 21 3

nursery 0.92 2 3 − − − − − − 1.631.631.63 81 3

automobile 0.85 5 5 − − − − − − 1.251.251.25 5 2

glass 1.55 3 1 1.12 5 6 − − − 1.921.921.92 5 1

dermatology 1.85 6 3 1.02 9 6 − − − 2.112.112.11 9 2

kr-vs-k 0.62 13 3 − − − − − − 1.831.831.83 351 3

abalone 0.53 14 3 − − − − − − 0.740.740.74 16 2

avg. rank 1.9 1.2 1.7 − − − − − 1.11.11.1 1.9 1.3

a As DSSD does have a stopping criterion, the maximum number of subgroups was
selected as the number of subgroups found by SSD++, and total overlapping subgroups
were posteriorly removed.
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G Statistical robustness results of applying SSD++ and our MDL
approach on unseen data.

In Table 10 we show the statistical robustness analysis of the SSD++ algorithm and our
MDL approach by seeing how its training performance translates to unseen data perfor-
mance. The measure used to evaluate the quality and generalisation of the found subgroups
is |LogLossRatio(train)−LogLossRatio(test)|, i.e., the absolute difference between the log
loss ratio in the train and test sets. First, the log loss (LogLoss) is defined as follows:

LogLoss(Y|X, SL(Dtrain)) =
∑

(y,x)∈{Y,X}
− log Pr(y | x, SL(Dtrain)), (67)

where SL(Dtrain) is a subgroup list selected from the train dataset Dtrain, Y and X corre-
spond to the target and exploratory data for which we want to know the log loss (it can be
the same as Dtrain for the training set, or different in case of the test set), and Pr(yi | SL)
denotes the probabilities based on a categorical or a normal distribution for nominal or
numeric targets, respectively. For the numeric case we use the probability density function
instead. Now, the LogLossRatio is the ratio between the LogLoss of subgroup list SL and
the LogLoss of the marginal distribution (equal to the default rule of SL):

LogLossRatio(∗) =
LogLoss(Y|X, SL(Dtrain))

LogLoss(Y|Θ̂d)
, (68)

where Θ̂d is the dataset’s marginal distribution. To avoid having probabilities equal to zero
and infinite log losses, for nominal targets, we added a pseudo-count of 0.5 to every subgroup
distribution, i.e., the Jeffrey’s prior for the multinomial distribution (Grünwald, 2007).
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Table 10 Statistical robustness analysis for nominal target datasets. This
table shows how our approach—SSD++ with normalised and absolute gain
(Eq. (39)), i.e., MDLβ=1 and MDLβ=0—generalises to unseen data, tested in
a 50%–50% train–test split. As baselines, we run SSD++ with KL and WKL
divergence as quality measures, i.e., the same as our approach but without
accounting for multiple hypothesis testing or distribution complexity (without
L(M) and COMP(na) in Eq. (39)). The properties of the datasets can be seen
in Table 7, and are ordered in ascending number of: 1) number of classes; and
2) number of samples. The evaluation measures are {Log Loss ratio between
subgroup list and dataset marginal distribution (equal to dataset rule) for
train (LLtrain) and test (LLtest) sets; and number of subgroups |S|}.

MDLβ=1 MDLβ=0 KLCat WKLCat

datasets LLtr LLtt |S| LLtr LLtt |S| LLtr LLtt |S| LLtr LLtt |S|
sonar 0.57 0.870.870.87 2 0.57 0.870.870.87 2 0.12 1.43 18 0.04 1.25 5

haberman 1.00 1.001.001.00 0 1.00 1.001.001.00 0 0.51 1.34 27 0.55 1.38 15

breastCancer 0.13 0.31 4 0.17 0.40 3 0.07 0.240.240.24 20 0.15 0.38 4

australian 0.44 0.61 4 0.50 0.540.540.54 2 0.11 0.97 50 0.24 0.77 14

tictactoe 0.09 0.160.160.16 15 0.45 0.55 9 0.08 0.44 41 0.28 0.37 12

german 0.85 0.94 2 0.86 0.920.920.92 2 0.26 1.27 74 0.26 1.65 27

chess 0.08 0.100.100.10 11 0.13 0.16 9 0.04 0.16 83 0.10 0.17 16

mushrooms 0.00 0.000.000.00 11 0.17 0.17 6 0.01 0.02 36 0.16 0.17 7

magic 0.51 0.630.630.63 39 0.66 0.69 9 0.13 0.88 1078 0.59 0.74 77

adult 0.62 0.670.670.67 65 0.72 0.72 8 0.34 0.88 2570 0.68 0.72 96

iris 0.18 0.07 3 0.16 0.060.060.06 3 0.16 0.18 9 0.16 0.060.060.06 3

balance 0.48 0.76 6 0.58 0.80 3 0.27 0.74 51 0.35 0.740.740.74 14

CMC 0.90 0.91 3 0.89 0.880.880.88 3 0.41 1.15 148 0.64 1.01 42

page-blocks 0.27 0.420.420.42 12 0.38 0.46 6 0.21 0.51 94 0.36 0.45 12

nursery 0.08 0.110.110.11 59 0.44 0.44 3 0.09 0.17 310 0.44 0.44 3

automobile 0.58 0.88 3 0.56 0.860.860.86 3 0.28 0.91 14 0.31 0.860.860.86 6

glass 0.26 0.230.230.23 4 0.38 0.31 3 0.20 0.39 14 0.36 0.33 3

dermatology 0.28 0.370.370.37 6 0.43 0.51 3 0.18 0.51 21 0.43 0.54 4

kr-vs-k 0.57 0.620.620.62 186 0.88 0.88 5 0.53 0.77 2864 0.88 0.88 5

abalone 0.85 0.850.850.85 7 0.88 0.87 3 0.78 1.05 331 0.87 0.87 7
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Table 11 Statistical robustness analysis for numeric target datasets. This
table shows how our approach—SSD++ with normalised and absolute gain
(Eq. (39)), i.e., MDLβ=1 and MDLβ=0—generalises to unseen data, tested in
a 50%–50% train–test split. As baselines, we run SSD++ with KL and WKL
divergence as quality measures, i.e., the same as our approach but without
accounting for multiple hypothesis testing or distribution complexity (with-
out L(M) and COMP(na) in Eq. (39)). The properties of the datasets can be
seen in Table 8, and are ordered in ascending number of number of sam-
ples. The evaluation measures are {Log Loss ratio between subgroup list and
dataset marginal distribution (equal to dataset rule) for train (LLtrain) and
test (LLtest) sets; and number of subgroups |S|}. Note that ∞ values happen
when at least one unseen point is not covered by the standard deviation of
one subgroup.

MDLβ=1 MDLβ=0 KLCat WKLCat

datasets LLtr LLtt |S| LLtr LLtt |S| LLtr LLtt |S| LLtr LLtt |S|
baseball 0.86 0.97 4 0.88 0.920.920.92 3 0.66 163.57 42 0.84 1.40 7

autoMPG8 0.69 0.790.790.79 7 0.78 0.81 3 0.41 3.19 45 0.74 0.84 7

dee 0.32 0.500.500.50 6 0.52 0.67 2 −0.59a 13.39 44 0.21 7.59 10

ele-1 0.90 0.93 6 0.92 0.93 4 0.87 0.920.920.92 34 0.92 0.93 5

forestFires 0.45 196.32 13 0.60 10.0310.0310.03 6 0.25 157.70 52 0.55 26.29 11

concrete 0.82 0.860.860.86 10 0.87 0.88 6 0.51 6.59 123 0.84 0.94 11

treasury 0.05 0.86 18 0.41 0.48 6 −0.30a 10.90 99 0.36 0.410.410.41 6

wizmir 0.56 0.580.580.58 15 0.72 0.73 4 0.30 3.67 176 0.72 0.73 4

abalone 0.80 0.870.870.87 18 0.87 0.90 7 0.64 1.50 304 0.86 0.90 12

puma32h 0.68 0.71 28 0.76 0.76 8 2.49 ∞ 1023 0.76 0.400.400.40 8

ailerons 0.87 ∞ 59 0.92 0.92 5 1.39 ∞ 1523 0.92 0.720.720.72 7

elevators 0.80 0.86 93 0.87 0.86 11 1.62 ∞ 1951 0.86 0.620.620.62 38

bikesharing 0.82 0.850.850.85 84 0.90 0.90 6 0.68 3.33 1997 0.90 0.94 21

california 0.94 4.14 99 0.97 0.970.970.97 9 0.88 2.44 2124 0.97 ∞ 37

house 0.88 ∞ 151 0.94 2.57 18 0.76 ∞ 2744 0.93 1.311.311.31 36

a Negative values are possible when the standard deviation is very small.
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H Empirical analysis of compression gain

In this section we present a thorough comparison of the normalisation terms β of SSD++,
where β = 1 is the normalised gain and β = 0 the absolute gain. SSD++ is executed with the
same parameters (beam width, number of cut points for numerical variables, and maximum
depth of search) as in the experiments section, i.e., wb = 100, ncut = 5, dmax = 5. The
different types of gain are compared for all the benchmark datasets described in the paper
in terms of their compression ratio (defined later) in Figure 12, Sum of Weighted Kullback-
Leibler divergency (SWKL) in Figure 13, and number of rules in Figure 14. The compression
ratio is the length of the found model L(D,M) divided by the length of encoding the data

with the dataset distribution (a model without subgroups) L(D | Θ̂d), and formally it has
the following form:

L% =
L(D,M)

L(D | Θ̂d)
(69)
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Fig. 12 Compression ratio obtained with β = 0 (absolute gain), β = 0.5, and
β = 1 (normalised gain)
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Fig. 13 Normalised SWKL obtained with β = 0 (absolute gain), β = 0.5, and
β = 1 (normalised gain)



82 Hugo M. Proença et al.

100

200

300

400
= 1(normalized)
= 0.5
= 0 (absolute)

son
ar

ha
be

rm
an

bre
ast

Can
cer

au
str

alia
n

Tic
Ta

cTo
e

ge
rm

an
che

ss

mush
roo

ms
mag

ic
ad

ult iris

ba
lan

ceCMC

pa
ge

-bl
ock

s

nu
rse

ry

au
tom

ob
ile

gla
ss

de
rm

ato
log

y
kr-

vs-
k

ab
alo

ne
0

10

20

30

nu
m

be
r o

f s
ub

gr
ou

ps

(a) Univariate nominal target

100

200

300

400
= 1(normalized)
= 0.5
= 0 (absolute)

ba
seb

all

au
toM

PG
8

de
e

ele
-1

for
est

Fir
es

con
cre

te

tre
asu

ry
wizm

ir

ab
alo

ne

pu
ma3

2h

aile
ron

s

ele
va

tor
s

bik
esh

ari
ng

cal
ifo

rni
a
ho

use
0

10

20

30

nu
m

be
r o

f s
ub

gr
ou

ps

(b) Univariate numeric target

Fig. 14 Number subgroups obtained with β = 0 (absolute gain), β = 0.5, and
β = 1 (normalised gain)

I Empirical analysis of the influence of the beam search
hyperparameters

This section presents a thorough comparison of the influence of the hyperparameters of the
beam search of SSD++ on its results. As a complete search over the whole combination of
parameters is unfeasible, we present here an exploration of the hyperparameters used for
the experimental comparison in the paper (wb = 100, ncut = 5, dmax = 5), i.e., we fix two
of the parameters on the values above and then proceed to change the selected parameter of
interest. We do this for all the 3 parameters. The line between the dots of the same colour
does not represent an interpolation and is merely used to aid visualisation and suggest
trends.

Note on relative compression. It may seem that the values of the relative compression
remain constant, but that is an illusion due to the scale of the y axis. Moreover, as the
compression ratio is given by dividing large values (usually above the thousands), its value
with two decimal digits can be misleading. Nonetheless, in general, when zooming over
the figures, one can discern a slight improvement (smaller values) for larger values of the
hyperparameters.
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Fig. 15 Compression ratio obtained by varying the maximum search depth
fixing wb = 100, ncut = 5 and β = 1 (normalised gain). The black vertical line
represents the value used in Experiments section of the paper
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Fig. 16 Average number of conditions per subgroup obtained by varying the
maximum search depth fixing wb = 100, ncut = 5 and β = 1 (normalised gain).
The black vertical line represents the value used in Experiments section of the
paper
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Fig. 17 Compression ratio obtained by varying the beam width and fixing
dmax = 5, ncut = 5 and β = 1 (normalised gain). The black vertical line
represents the value used in Experiments section of the paper
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Fig. 18 Compression ratio obtained by varying the number of cut points and
fixing wb = 100, dmax = 5 and β = 1 (normalised gain). The black vertical
line represents the value used in Experiments section of the paper
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Carmona CJ, González P, del Jesus MJ, Herrera F (2014) Overview on
evolutionary subgroup discovery: analysis of the suitability and poten-
tial of the search performed by evolutionary algorithms. Wiley Interdis-
ciplinary Reviews: Data Mining and Knowledge Discovery 4(2):87–103,
doi:10.1002/widm.1118

Cheng H, Yan X, Han J, Philip SY (2008) Direct discriminative pattern mining
for effective classification. In: 2008 IEEE 24th International Conference on
Data Engineering, IEEE, pp 169–178, doi:10.1109/ICDE.2008.4497425

Cohen WW (1995) Fast effective rule induction. In: Prieditis A, Russell S
(eds) Machine Learning Proceedings 1995, Morgan Kaufmann, pp 115–123,
doi:10.1016/B978-1-55860-377-6.50023-2

De Leeuw AW, Meerhoff LA, Knobbe A (2018) Effects of pacing prop-
erties on performance in long-distance running. Big Data 6(4):248–261,
doi:10.1089/big.2018.0070

Delahoz-Dominguez E, Zuluaga R, Fontalvo-Herrera T (2020) Dataset of
academic performance evolution for engineering students. Data in Brief
30:105537, doi:10.1016/j.dib.2020.105537
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Hämäläinen W, Webb GI (2017) Specious rules: an efficient and effective unify-
ing method for removing misleading and uninformative patterns in associa-
tion rule mining. In: Proceedings of the 2017 SIAM International Conference
on Data Mining, SIAM, pp 309–317, doi:10.1137/1.9781611974973.35
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