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Abstract. Interpretable machine learning focuses on learning models
that are inherently understandable by humans. Even such interpretable
models, however, must be trustworthy for domain experts to adopt them.
This requires not only accurate predictions, but also reliable explanations
that do not contradict a domain expert’s knowledge. When considering
rule-based models, for example, rules may include certain variables either
due to artefacts in the data, or due to the search heuristics used. When
such rules are provided as explanations, this may lead to distrust.

We investigate whether human guidance could benefit interpretable ma-
chine learning when it comes to learning models that provide both accu-
rate predictions and reliable explanations. The form of knowledge that
we consider is that of preferred variables, i.e., variables that the domain
expert deems important enough to be given higher priority than the other
variables. We study this question for the task of multiclass classification,
use probabilistic rule lists as interpretable models, and use the minimum
description length (MDL) principle for model selection.

We propose S-Classy, an algorithm based on beam search that learns
rule lists and takes preferred variables into account. We compare S-
Classy to its baseline method, i.e., without using preferred variables,
and empirically demonstrate that adding preferred variables does not
harm predictive performance, while it does result in the preferred vari-
ables being used in rules higher up in the learned rule lists.

Keywords: classification · probabilistic rule lists · minimum description
length (MDL) principle · human-guided machine learning

1 Introduction

Explainable Artificial Intelligence (XAI) and interpretable machine learning [10]
are important topics that currently attract a lot of attention within and outside
the academic community. Although the two fields are clearly related in that
both aim to provide explanations for predictions (or other outcomes) given by
AI systems, they usually refer to slightly different approaches. XAI approaches
typically attempt to provide post-hoc explanations for predictions [16], which can
be done for any type of predictive model—whether it’s a complex, ‘black box’
model such as a neural network, or a simpler model such as a linear regression
model. Interpretable machine learning, on the other hand, focuses on learning
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interpretable models, models that are inherently understandable by humans—
such as linear regression models and rule- and tree-based models.

In application domains where high-stake decisions are made, such as law and
health care, predictive models are used for decision support, i.e., assisting the
domain experts making decisions rather than autonomously making decisions.
This calls for human-centred AI, where machine learning models augment human
experts rather than replace them. This leads to extra requirements on models and
algorithms: for domain experts to adopt an AI system, it must be trustworthy,
i.e., it must not only provide accurate predictions, but also reliable explanations.

Providing reliable explanations is by no means a simple feat. Models are often
learned from relatively small datasets—especially in high-stake settings where
data is typically expensive—and certain associations may be perceived as more
reliable than others. In health care, for example, a medical doctor will only trust
explanations using patient properties of which they think a relationship with
the target variable is plausible. Explanations that contradict a domain expert’s
knowledge, in contrast, are likely to be detrimental to their trust.

We argue that interpretable machine learning has an advantage over XAI in
such settings, because interpretable models make it easier to explain how and
why predictions are made. Nevertheless, this does not imply that the predictions
made by interpretable models are “right for the right reasons” [15]. When con-
sidering rule-based models, for example, rules may be based on certain variables
either due to associations in parts of the data, or due to the search heuristics
used. When such rules are provided as explanations, this will lead to distrust.

Approach and contributions. In this paper we investigate whether human
guidance could benefit interpretable machine learning when it comes to learning
models that provide both accurate predictions and reliable explanations. More
specifically, we study whether prior knowledge provided by a domain expert
may lead to models consistent with that knowledge. This can be seen as an
instance of informed machine learning [17], in which prior knowledge (given as,
e.g., knowledge graphs or human feedback) informs the learning process.

The form of knowledge that we consider is that of preferred variables, i.e.,
variables that the domain expert deems important enough to be given higher
priority than the other variables while learning a predictive model. The idea is
that specifying detailed knowledge is often hard, but experts will usually have a
good idea of which variables they expect to be the most informative with regard
to the variable of interest, for which predictions are to be made.

We consider the task of multiclass classification, because it is one of the most
commonly studied and practically used machine learning tasks. As models we
use probabilistic rule lists, because they are interpretable and we have recently
introduced algorithms for finding good rule lists using the minimum description
length (MDL) principle as model selection criterion [11,12]. That is, we use
compression as optimisation criterion, which has as most notable advantages
that it makes hyper-parameter tuning unnecessary and avoids overfitting.

After discussing related work in Section 2, we motivate and formalise the
problem of discovering rule lists with preferred variables in Section 3. Following
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this, in Section 4 we propose S-Classy, an algorithm based on beam search
that learns rule lists and takes preferred variables into account by first explor-
ing and considering rules that include at least one preferred variable. Section 5
empirically investigates the effect of having preferred variables on compression,
runtime, predictive accuracy, overfitting, and rule list size. For this we simu-
late external knowledge by ranking variables by feature importances that we
obtained with random forests. We compare S-Classy to its baseline method
bClassy, which does not use the preferred variables, on commonly used bench-
mark datasets. The results demonstrate that augmenting the rule learning pro-
cess with background knowledge—in the form of preferred variables—does not
harm any of the major evaluation criteria, while it does result in the preferred
variables being used in rules higher up in the rule list.

2 Related Work

Based on the type of model used, rule learning can be roughly divided in rule
list learning, rule set learning, and mixtures of both. Well-known classification
algorithms such as Ripper [3], C4.5 [13], Furia [6], and unordered-CN2 [2] use
an ordered one-vs-all approach to learn rules for the multiclass classification
problem, as a result of which they essentially return ordered lists of rule sets.
Such lists of sets are harder to interpret than ‘plain’ rule lists or rule sets. CBA
[8] uses large numbers of association rules, which also hampers interpretability.

Direct rule set learning methods include IDS [7] and DRS [19], but unlike
our approach they are not probabilistic. Turs [18] is a recent method for learn-
ing ‘truly unordered’ probabilistic rule sets, using a surrogate score to tackle
incomplete rule sets. Another recent approach is Classy [12], a state-of-the-art
algorithm for learning ordered rule lists. It discovers probabilistic rules for multi-
nomial targets with both categorical and quantitative predictive variables. Both
Turs and Classy use the minimum description length (MDL) principle [5] as
model selection criterion to select rules that compress the data well but have a
relatively low model complexity. While Classy uses a pre-mined set of candi-
date patterns, Proença et al. [11] later proposed SSD++, an improved algorithm
that directly finds good rule lists using beam search for candidate generation.
Although SSD++ was introduced for subgroup list discovery, it can just as well
be be used for classification; we will call this beam search version bClassy.

As far as we are aware, how to influence search in rule learning using back-
ground knowledge has hardly been studied. In subgroup discovery, IDSD [4] is
an interactive search where the user can influence the beam of a beam search by
providing feedback (like/dislike). This results in erratic search behaviour though.

3 Rule Learning with Preferred Variables

We start with important definitions and notation in Subsection 3.1, after which
we introduce the problem statement in Subsection 3.2 and briefly summarise the
model and data encoding that we will use in Subsection 3.3.
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3.1 Data, Rules, and Rule Lists

Let D = (X,Y ) be a supervised dataset, consisting of a dataset X and a
(multi)class label vector Y . Let X and Y be the instance space and the set
of all |Y| classes, respectively. Let V = {v1, v2, ..., vm} be the set of all m = |V |
variables in X, with each vi representing a one-dimensional variable with domain
dom(vi). Each (x, y) ∈ D is a record, where instance x = (x1, x2, ..., xm) ∈ X is
a vector of values with xi ∈ dom(vi) for each vi, and y ∈ Y is the class label
belonging to the instance. Dataset D has n = |D| records.

We are interested in learning rules from data. Here, a rule r is a conditional
statement that links occurrences of patterns to class probabilities. More precisely,
a rule is a pair r = (p, π(p)), where antecedent p is a pattern and its consequent
is a probability distribution π(p). A pattern is a conjunction of conditions over
variables, e.g., p = [v1 = ‘A’ ∧ v3 = 0]. Further, π(p) is a categorical probability
distribution π = (πy1 , πy2 , ..., πy|Y|) over all class labels Y. An example rule could
be if [v1 = ‘A’ ∧ v3 = 0] then πy1 = 0.85, πy2 = 0.05, πy3 = 0.10.

A probabilistic rule list (PRL)R is an ordered list of l+1 rules (r1, r2, ..., rl, r∅),
where the last rule in the list, r∅, is called the default rule. It has the empty set
as antecedent and is assigned a probability distribution π∅.

The usage of a pattern p ∈ R is the number of its occurrences in a dataset D,
disregarding all instances that were covered by previous patterns in R, i.e.,

usg(pi |R,D) = |{x ⊂ D | pi ⊑ x ∧ (
∧
∀j<i

pj ̸⊑ x)}|, (1)

where p ⊑ x denotes that pattern p occurs in instance x, i.e., x satisfies all
conditions in p, and ̸⊑ is the reverse. The label-oriented usage of a pattern
pi ∈ R is the number of pattern occurrences in dataset D that correspond to
class label l, where Dy=l = {(x, y) ⊂ D | y = l} is the subset of D where class
label l occurs:

usg(pi |R,Dy=l) = |{x ⊂ Dy=l | pi ⊑ x ∧ (
∧
∀j<i

pj ̸⊑ x)}|. (2)

We consider the problem of rule learning for multiclass (or multinomial) clas-
sification, meaning that it is our aim to learn a rule list from a given supervised
dataset such that it can accurately predict the class labels for unseen instances.

3.2 Problem Statement

As mentioned in the previous section, the minimum description length (MDL)
principle [5] has previously been successfully used for rule learning [12,18]. Infor-
mally, the principle states that the best model is the one that best compresses
the data together with the model. Formally, given a (training) supervised dataset
D and a corresponding model class R, consisting of all possible rule lists for D,
the optimal rule list R∗ is given by

R∗ = argmin
R∈R

L(D,R) = argmin
R∈R

[L(R) + L(Y |X,R)] , (3)
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where L(R) is the encoded length, in bits, of the rule list and L(Y |X,R) is the
encoded length, in bits, of class labels Y given data X and rule list R.

This is the same problem formalisation as was previously used forClassy [12],
and was shown to result in compact rule lists that performed well in terms of
predictive performance. One advantage of using the MDL principle is that it au-
tomatically protects from overfitting by balancing model complexity with good-
ness of fit, hence cross-validation for hyperparameter tuning is not necessary.

Since finding the optimal rule listR∗ is a hard problem, heuristic algorithms—
such as Classy and bClassy—are used in practice. Although predictive per-
formance of the resulting rule lists may be excellent, the patterns used may be
less than ideal to a domain expert due to two reasons: 1) the optimal rule list
may not be found due to the use of heuristic search; and 2) under certain circum-
stances multiple variables may lead to equally ‘good’ rules, in which case one of
those is arbitrarily chosen and used. The latter may happen, for example, when
two variables are strongly associated. For high-stake decisions it is crucial that
a model uses the ‘right’ variables for a prediction though, so that the patterns
can be served to domain experts as explanations and gain their trust.

Because of the second reason, improving the learning algorithms is unlikely
to ever completely address this issue: in practice only a limited sample of data is
available, and that may contain insufficient information to be able to choose the
‘right’ variables. We therefore argue that it may be needed to integrate external
knowledge in the learning process in order to obtain more reliable explanations.

As an initial step in this direction, we investigate whether injecting limited
expert knowledge may be helpful in guiding the heuristic search to rule lists
that are at least equally predictive but use patterns that are potentially more
informative to domain experts than if no such knowledge is provided.

More specifically, we assume that we have access to a domain expert who is
knowledgeable on the domain of the classification problem under consideration.
The domain expert specifies a (small) set of preferred variables U ⊂ V of which
they are convinced they could and should be used for predicting the target
variable Y . The preferred variables should be given higher priority during the
search for a rule list than the remaining variables, i.e., V \U , meaning that they
should be considered for pattern growth first. Note that this does not mean that
the preferred variables should be used regardless of the data; if the domain expert
is wrong, this should not result in models with poor predictive performance.

3.3 Encoding

For the code length of the model and the code length of the data given the
model, i.e., L(R) and (Y |X,R), respectively, we use the same encoding as used
by Classy [12]. We here only provide a brief overview.

Model encoding. We use the universal code for integers1 LN(i) to penalise
for rule length, while the uniform code provides a means to assign equal-length
codes to variables and values of variables. The length of a pattern pi is given

1 LN(i) = log∗ i+ log λ,where log∗ i = log i+ log log i+ ... and constant λ ≈ 2.865064.
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by the number of conditions in that pattern encoded by the universal code for
integers, and then each condition cj in pi is encoded using uniform codes for
the variables and values, i.e., L(pi) = LN(|pi|) +

∑
cj∈pi

(log |V | + log dom(vj)).
Now, the total length of a probabilistic rule list R is computed as the sum of the
number of rules and the lengths of the individual patterns, given by

L(R) = LN(|R|) +
∑
pi∈R

L(pi). (4)

Data encoding. For the encoding of the class label vector the prequential plug-
in code is used, which at each stage is the optimal code given the data so far
(i.e., it sequentially predicts the next symbol). It is given by

πplug−in(yi = l|Yi−1) :=
|{y ∈ Yi−1|y = l}|+ ϵ∑

k∈Y |{y ∈ Yi−1|y = k}|+ ϵ
, (5)

where yi is the ith class label, Yi−1 = {y1, ..., yi−1} is the sequence of the i − 1
first class labels, and ϵ = 1 (for a uniform prior). The above can be expressed
by the maximum likelihood estimator (MLE) πl

i for any probability π(y = l | pi),
any rule pi and any class label l. The Laplace smoothing (pseudocount ϵ) is
added to the equation of the maximum likelihood estimator to all label-oriented
usages to avoid probabilities of zero. Then, the smoothed MLE is formalised as

πl
i =

usg(pi |R,Dy=l) + ϵ

usg(pi |R,D) + |Y|ϵ . (6)

4 Beam search with preferred variables

Rule learning is generally a hard problem, and finding the MDL-optimal rule
list is certainly hard—heuristic algorithms are therefore common practice. The
original Classy algorithm [12] iteratively selected patterns from a pre-mined
candidate set. The SSD++ algorithm [11] improved on this by means of a beam
search; although SSD++ is aimed at finding subgroup sets, Proença’s disserta-
tion [9] has shown that rule learning and subgroup discovery are closely related.
We here employ the SSD++ beam search algorithm for learning rule lists as in
Classy, and dub this beam search variant of the algorithm bClassy. Using
the beam search has several advantages: 1) there is no need to pre-mine candi-
dates, allowing to prune the search space as the search progresses; 2) on-the-fly
discretisation can be used, giving better results for quantitative variables [11].
An additional advantage that is of particular importance to us is that the beam
search allows to guide the search using preferred variables.

We propose S-Classy, a greedy algorithm based on bClassy that starts
with a rule list consisting of only the default rule and iteratively adds rules until
compression cannot be improved, taking into account the preferred variables as
given by the domain expert. Before we describe the algorithm in detail we briefly
summarise how compression gain is computed.
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Algorithm 1 S-Classy algorithm

Input: Dataset D, set of preferred variables S, beam width ωb, maximum pattern
length |r|max, minimum support threshold ms

Output: Probabilistic rule list R
1: R← [r∅] ▷ Start with default rule
2: while True do ▷ Repeat while compression can be improved
3: Cands← ∅
4: for s ∈ S do ▷ Perform beam search for each preferred variable
5: Cands← Cands ∪BeamSearch(s,R,D, ωb, |r|max,ms)
6: end for
7: if Cands = ∅ then ▷ No candidates? Perform full beam search
8: Cands← BeamSearch(∅, R,D, ωb, |r|max,ms)
9: end if
10: r ← argmaxr′∈Cands δL(D,R⊕ r′) ▷ Pick rule that maximises normalised gain
11: if δL(D,R⊕ r) > 0 then
12: R← R⊕ r ▷ Add rule to rule list
13: S ← S \ V ariablesInPattern(r) ▷ Update preferred variable set
14: else
15: return R ▷ Return final rule list
16: end if
17: end while

Compression gain. To find a good rule list according to Eq 3, in each iteration
we aim to find that rule that improves compression the most. To this end, abso-
lute compression gain∆L is defined as∆L(D,R⊕r) = L(D,R)−L(D,R⊕r), i.e.,
the number of bits gained by adding a rule r to rule list R. Since greedy search
combined with absolute compression gain has been shown to favour fewer rules
that are less accurate but cover more instances [12], we also use the normalised
compression gain. The normalised gain δL(D,R ⊕ r) is the absolute gain nor-

malised by the usage of the corresponding pattern p, δL(D,R⊕r) = ∆L(D,R⊕r)
usg(p |R,D) .

Algorithm. S-Classy is given by Algorithm 1. It starts by initialising a rule
list to the default rule (Ln 1). Then, one rule is added in each iteration of the
main loop (Ln 2–17) until no rule that improves compression can be found and
the resulting rule list is returned (Ln 15). In each iteration, first a beam search
is done for each preferred variable (Ln 4–6), starting the search from the given
preferred variable s (i.e., it only considers patterns that include a condition on
s). If S is empty or the previous beam searches did not result in any candidate
rules, then a beam search considering all possible rules is conducted (Ln 7–9).
In all calls to the beam search, the beam width, maximum pattern length, and
minimum support threshold hyper-parameters are given to constrain the search.

After all beam search procedures have been completed, the candidate rule
with the largest normalised compression gain is selected (Ln 10). If its compres-
sion gain is larger than 0 (Ln 11), it improves overall compression (Eq. 3) and
is thus added to the rule list (Ln 12). Note that all rules are added at the end of
the rule list, but just before the default rule (which is always updated to reflect
the class distribution of the uncovered instances). Finally, the set of preferred
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Table 1. Dataset characteristics: number of records (|D|); total number of values for
all vi, denoted |x|; number of variables m; number of class labels (|Y|); size of set S,
denoted K. Further, ∗ indicates dataset characteristics after the removal of rows with
NaN values. Relative compression (L%) and runtime (sec) are averaged over all 10
folds using the top-K set of preferred variables S.

Dataset Characteristics µ(L%) µ(sec)

|D| |x| m |Y| K S-Classy bClassy S-Classy bClassy

Breast∗ 683 16 9 2 1 0.62 0.62 0.12 0.13
Cong. voting∗ 231 34 16 2 2 0.75 0.75 0.37 0.42
Dermatology∗ 358 49 12 6 2 0.47 0.47 3.09 3.11
Heart∗ 297 50 13 5 2 0.12 0.13 1.14 1.21
Ionosphere 351 157 34 2 4 0.39 0.39 3.35 3.48
Iris 150 19 4 3 1 0.75 0.75 0.31 0.33
Led7 3200 24 7 10 1 0.51 0.51 6.21 6.11
Letter 20000 102 16 26 2 0.50 0.50 822.08 823.55
Mushroom∗ 5644 80 21 2 3 0.97 0.97 1.94 1.99
Pen digits 10992 86 16 10 2 0.84 0.84 294.91 294.09
Pima Indians 768 38 8 2 1 0.10 0.10 0.01 0.01
Tic-tac-toe 958 29 9 2 1 0.46 0.46 1.22 1.26
Waveform 5000 101 21 3 3 0.44 0.44 42.75 42.76
Wine 178 68 13 3 3 0.62 0.64 2.78 2.94

variables is updated: any of the preferred variables used in the pattern of rule r
are removed from S, and they will not be given priority in further iterations.

Note that the algorithm only adds rules that improve overall compression.
In that sense the preferred variables can help guide the search, but if no viable
rules using those variables are found the algorithm falls back to using other
variables—if the knowledge provided by a domain expert is not in agreement
with the evidence in the data, then this cannot have a negative impact.

5 Experiments

All experiments2 use a minimum support threshold of ms = 5% and maximum
pattern length of |r|max = 4, following the baseline comparisons of Proença [12].

Data. We evaluate our algorithm using 14 discrete-valued datasets publicly
available from LUCS/KDD3, see Table 1 for their characteristics. We randomise
the order of the instances before splitting into folds for 10-fold cross-validation.

Simulating knowledge. As no expert knowledge is available for these datasets
and we aim for reproducible results, we choose to simulate expert knowledge. For
fairness we do not wish to use bClassy or other interpretable models for this.

2 The source code is available at: https://github.com/ioannapap/S-CLASSY.
3 https://cgi.csc.liv.ac.uk/~frans/KDD/Software/LUCS-KDD-DN/DataSets/

dataSets.html#datasets

https://github.com/ioannapap/S-CLASSY
https://cgi.csc.liv.ac.uk/~frans/KDD/Software/LUCS-KDD-DN/DataSets/dataSets.html#datasets
https://cgi.csc.liv.ac.uk/~frans/KDD/Software/LUCS-KDD-DN/DataSets/dataSets.html#datasets
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Instead we use Random Forest (RF), which is widely implemented and often
used in real world applications [1,14]. We train a random forest on the entire
dataset and rank all variables based on the entropy-based feature importance
scores. Next, we select a set S of K variables as preferred variables, where K
depends on the number of variables in a dataset. We use K = m · 10%, rounded
upwards, which is a small but substantial percentage of the total number of
variables m. For our empirical evaluation, we consider three sets of variables as
preferred variables to be given as input: 1) top-K, theK highest ranked variables;
bottom-K, the K lowest ranked variables; and 3) random-K, K variables that
are selected uniformly at random from V (once, before all experiments are done).

Evaluation criteria. We evaluate the algorithm on 1) compression, 2) run-
time, 3) classification performance, 4) overfitting, and 5) interpretability. For
the compression criterion, we calculate relative compression gain as

L% = 1− L(D,R)

L(D, {∅})
. (7)

That is, it is the compressed size of the data given the final rule list L(D,R)
over the compressed size of the data given the rule list with only the default rule
L(D, {∅}). We subtract the fraction from 1, so that the closer to 1 the relative
compression gets, the better. We use a timer to measure runtime in seconds
for every fold and then average it over all 10 folds (µ(sec)). Similar to [12],
we check the Area Under the ROC Curve (AUC) to quantify the classification
performance. We weigh per class binary AUCs with their marginal frequencies
since the majority of the datasets are multinomial.

Overfitting is here evaluated as the mean absolute difference in AUC between
the train and test set, i.e., |µ(AUC)train − µ(AUC)test|. How to evaluate the
interpretability of a rule-based model is a complex topic on itself. A minimum
requirement for a rule list to be interpretable is that it needs to be small, i.e.,
it must contain relatively few rules that are not too long. We therefore quantify
interpretability using average rule length (µ|r|) and the average number of rules
in a rule list (µ|R|). Lastly, we are interested in investigating whether the pre-
ferred variables influenced the rules learned. For this we use the frequencies f
and positions of the preferred variables in the learned rules. Specifically, we care
mostly about the frequency of preferred variables in the first rule of each rule
list, which we annotate by f@1 and average over all folds.

5.1 Results

Regarding relative compression and runtime, we recognise that when the top-K
preferred variable set S is used, S-Classy performs similarly to bClassy, see
Table 1. S-Classy’s runtime is slightly lower overall. Our algorithm also ranks
first regarding accuracy when using the top-K, as seen in Table 2. This is a
good result, as it shows that adding preferred variables does not harm predic-
tive performance and may even benefit it. When using the bottom-K variables
as background knowledge, performance is worse than for the other variants and
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Table 2. Mean (µ) results per dataset using 10-fold cross-validation, with fixed
ms = 5%, ωb = 100 and |r|max = 4. Bottom, random and top are the three differ-
ent sets of simulated ‘preferred variables’ used for S-Classy. AUC is the Area Under
the ROC Curve in test set, |µ(AUC)train − µ(AUC)test| is the overfitting. Then, f@1
and max (f@1) is the frequency of all preferred variables and the maximum (highest)
frequency of a preferred variable respectively, both at 1st position of the rule list, for
S-Classy (abbreviated S-Cl) and bClassy (abbreviated bCl).

Dataset µ(AUC)test |µ(AUC)train − µ(AUC)test| µ(f@1) max (f@1)

S-Classy bClassy RF S-Classy bClassy RF S-Cl bCl S-Cl bCl

bottom random top bottom random top top top

Breast 0.50 0.94 0.94 0.94 0.95 0 0.007 0.007 0.007 0 1 1 1 1
Cong. voting 0.97 0.97 0.97 0.97 0.96 0.002 0.002 0.002 0.002 0.007 0.50 0.50 1 1
Dermatology 0.50 0.86 0.86 0.86 0.73 0 0.029 0.034 0.029 0.006 0.50 0 0.60 0
Heart 0.50 0.66 0.67 0.66 0.67 0 0.018 0.018 0.019 0.012 0.95 1 1 1
Ionosphere 0.54 0.84 0.85 0.85 0.90 0.004 0.081 0.072 0.075 0.009 0.25 0.47 1 1
Iris 0.95 0.95 0.95 0.95 0.95 0.019 0.019 0.019 0.019 0.022 1 0 1 0
Led7 0.84 0.84 0.84 0.84 0.50 0.005 0.005 0.005 0.005 0.001 1 1 1 1
Letter 0.79 0.79 0.79 0.79 0.50 0.007 0.008 0.007 0.011 0 1 0.45 1 0.90
Mushroom 0.50 1 1 1 0.99 0 0 0 0 0 0.33 0.33 1 1
Pen digits 0.97 0.97 0.98 0.97 0.50 0.010 0.010 0.011 0.011 0 0.33 0.33 1 1
Pima Indians 0.50 0.50 0.66 0.66 0.67 0 0 0.001 0.001 0.012 1 1 1 1
Tic-tac-toe 0.87 0.87 0.87 0.87 0.64 0.009 0.009 0.009 0.009 0.025 1 1 1 1
Waveform 0.82 0.82 0.83 0.82 0.77 0.026 0.026 0.026 0.026 0.006 0.57 0.50 1 1
Wine 0.92 0.92 0.92 0.92 0.94 0.058 0.058 0.058 0.058 0.034 0.37 0.33 1 0.90

rankall 2.86 1.86 1.29 1.57 3.14 1.36 2.21 2.36 2.57 2.36 1.14 1.36 1 1.29

also worse than bClassy. This indicates that providing preferred variables is
not entirely without risk: despite our goals, poorly chosen variables may result in
worse predictive performance. All variants of S-Classy perform better overall
than RF (rankall)

4, which is interesting because the RF-based feature impor-
tance does benefit S-Classy. With regard to overfitting, bottom and random
sets do well but that is to be expected; poor predictions on training data are still
poor on test data. More interestingly, the results suggest that providing infor-
mative preferred variables potentially leads to less overfitting, as S-Classy with
‘top’ evaluation sets ranks higher than bClassy and equal to RF with regard
to overfitting.

Clearly, the average number5 of conditions and rules that were discovered in
all different sets of S-Classy and bClassy, presented in Table 3, show little
to no difference with bClassy scoring overall first. However, when we calculate
the Jaccard distance6 between the conditions of bClassy rules and S-Classy
rules per rule position, we discover that the rules are in fact different. The
non-zero Jaccard distances shown in Table 3 are further explained by Table 2,
where we present the mean frequency f of all variables s ∈ S in the top-K set
and the maximum frequency f of the most used preferred variable at the first
rule position in the rule list. Moreover, Figure 1 shows—for four datasets—in
more detail the differences in the variables used in the rules learned by top-
K S-Classy and bClassy, making it visible that our algorithm manages to

4 Rankall (smaller is better) is the average rank over all datasets.
5 The lowest (> 0) µ|r|, µ|R| the better, 0 is treated as the worst.
6 For Jaccard distance, the closer to 0 the more similar and the closer to 1 the more
different (preferred state).
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Table 3. Mean (µ) number of 1) conditions in a rule r (|r|); and 2) rules in a rule list
R (|R|) per experiment, using 10-fold cross validation with fixed ms = 5%, ωb = 100
and |r|max = 4. Bottom, random and top are the simulated sets of ‘preferred variables’
used for S-Classy. The mean (µ) Jaccard distance is calculated between each simulated
variable set with bClassy.

Dataset µ|r| µ|R| µ(Jaccard distance)

S-Classy bClassy S-Classy bClassy S-Classy

bottom random top bottom random top bottom random top

Breast 0 4 4 4 0 2 2 2 1 0 0
Cong. voting 2 1 1 1 1 1 1 1 0.47 0 0
Dermatology 1 2 2 2 1 7 7 7 1 0.07 0.34
Heart 0 3 3 2 0 2 2 2 1 0.37 0.37
Ionosphere 1 2 2 2 1 6 5 5 1 0.66 0.04
Iris 2 2 2 2 2 2 2 2 0.23 0.23 0.47
Led7 3 3 3 3 21 21 21 21 0 0 0
Letter 4 4 4 4 153 150 151 151 0.91 0.67 0.68
Mushroom 1 2 2 2 1 2 5 5 1 0.85 0
Pen digits 4 4 4 4 77 73 76 76 0.94 0.94 0
Pima Indians 0 0 1 1 0 0 1 1 1 1 0
Tic-tac-toe 4 3 3 3 5 5 5 5 0.13 0.24 0
Waveform 4 4 3 4 39 39 40 39 0.76 0.81 0.27
Wine 3 3 3 2 4 4 4 4 0.08 0.08 0.08

rankall 2.14 1.57 1.36 1.29 2 1.5 1.64 1.43 1.21 1.71 2.21

Fig. 1. Mean (µ) frequency of top preferred variables per rule position in the rule list
using 10-fold cross validation in Dermatology, Heart, Iris and Wine dataset.

include and combine the preferred variables more often than bClassy as earlier
as possible. These results not only demonstrate that our method manages to
learn different rules in the rule list from its predecessor algorithm, but at the
same time 1) ensure that the preferred variables are incorporated at the very
beginning of our rule list, and 2) keep competitive, and even in some experiments
higher, classification performance.
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6 Conclusions & Future Work

We argued that human guidance might be beneficial to interpretable machine
learning, especially in settings where predictions need to be accurate as well
as reliable and trustworthy explanations are needed. We investigated whether
this is the case for the problem of multiclass classification and used rule lists as
models. The form of knowledge that we considered is that of preferred variables,
i.e., variables that the domain expert deems important enough to be given higher
priority in the learning process than the other variables.

We proposed S-Classy, an algorithm based on beam search that learns rule
lists and takes preferred variables into account by first only exploring rules that
include one of the preferred variables. An empirical comparison of S-Classy to
its baseline method, i.e., without using preferred variables, demonstrated that
adding preferred variables does not harm predictive performance, while it does
result in the preferred variables being used in rules higher up in the learned rule
lists. From this we conclude that human guidance might indeed be beneficial to
rule learning, for predictive accuracy but also for learning the ‘right’ rules.

We consider this only to be a first step towards human-guided rule learning.
In the future, interesting directions would be to examine other model classes,
such as (unordered) rule sets, and expand the background knowledge language,
e.g., by allowing constraints based on conditions or patterns, or based on other
properties of a rule-based model. A more extensive study on the consequences
of using specified/preferred variables in terms of classification performance and
interpretability is also worth pursuing. In addition, we aim to evaluate our ap-
proach with real-world case studies involving actual domain knowledge provided
by domain experts. Finally, we think that interactive rule learning is a promising
avenue for future research.
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